Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-23T18:34:12.967Z Has data issue: false hasContentIssue false

The exact order of generalized diaphony and multidimensional numerical integration

Published online by Cambridge University Press:  09 April 2009

Vsevolod F. Lev
Affiliation:
Department of Mathematics, The University of Georgia, Athens GA 30605, USA e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

For a point set in the multidimensional unit torus we introduce an Lk-measure of uniformity of distribution, which for k=2 reduces to diaphony (and thus in this case essentially coincides with Weyl L2-discrepancy). For k ∈ [1, 2] we establish a sharp asymptotic for this new measure as the number of points of the set tends to infinity. Upper and lower-bound estimates are given also for k >2.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1999

References

[1]Bykowski, V. A., ‘On the right order of error of optimal cubature formulas in the spaces with dominating derivation and L 2-discrepancy of nets.’ (Dalnevost. Science Center of the USSR Acad. of Sciences, Vladivostok), preprint (in Russian).Google Scholar
[2]Chaix, H. and Faure, H., ‘Discrépance et diaphonie en dimension un’, Acta Arith. 63 (1993), 103141.CrossRefGoogle Scholar
[3]Chaix, H., ‘Discrépance et diaphonie des suites de van der Corput généralisées. III’, C. R. Acad. Sci. Paris Sér. I Math. 312 (1991), 755758.Google Scholar
[4]Dobrovolsky, N. M., Number-theoretic nets and their applications (Diss. Kand. Phis.-math. nauk, Tula, 1984) (in Russian).Google Scholar
[5]Frolov, K. K., ‘Upper-bound error estimates on classes of functions’, Dokl. Akad. Nauk SSSR 231 (1976), 818821. (in Russian)Google Scholar
[6]Korobov, N. M., Number-theoretic methods in numerical analysis (Fizmatgiz, Moscow, 1963) (in Russian).Google Scholar
[7]Lev, V. F., ‘Translations of nets and relationship between supreme and Lk-discrepancies’, Acta Math. Hungar. 70 (1996), 112.CrossRefGoogle Scholar
[8]Lev, V. F., ‘On quadrature formulas for classes with restrictions on Fourier coefficients’, Deposited to VINITI (USSR) 27.8.1987, no. 6294-B87 (in Russian).Google Scholar
[9]Lev, V. F., ‘Hyperbolic zeta-function of general form’, Deposited to VINITI (USSR) 27.8.1987, no. 6296-B87 (in Russian).Google Scholar
[10]Lev, V. F., ‘Diaphony and L2-discrepancies of multidimensional nets’, Mat. Zametki 47 (1990), 4554 (in Russian).Google Scholar
English translation in Math. Notes 47 (1990), 556564.CrossRefGoogle Scholar
[11]Lev, V. F., ‘Hyperbolic zeta-function of general form’, Mat. Zametki 48 (1990), 148150 (In Russian).Google Scholar
[12]Lev, V. F., ‘Quadrature formulas for classes with restrictions on Fourier coefficients’, Mat. Zametki 49 (1991), 219221 (in Russian).Google Scholar
English translation in Math. Notes 49 (1991), 219221.CrossRefGoogle Scholar
[13]Lev, V. F., ‘On two versions of L2-discrepancy and geometrical interpretation of diaphony’, Acta Math. Hungar. 69 (1995), 281300.CrossRefGoogle Scholar
[14]Paghs, G., ‘Van der Corput sequences, Kakutani transforms and one-dimensional numerical integration’, J. Comput. Appl. Math. 44 (1992), 2139.CrossRefGoogle Scholar
[15]Proinov, P. D., and Grozdanov, V. S, ‘On the diaphony of the van der Corput-Halton sequence’, J. Number Theory 30 (1988), 94104.CrossRefGoogle Scholar
[16]Proinov, P. D. and Atanassov, E. Y., ‘On the distribution of the van der Corput generalized sequences’, C. R. Acad. Sci. Paris Sér. I Math. 307 (1988), 895900.Google Scholar
[17]Roth, K. F., ‘On irregularities of distribution. I’, Mathematika 1 (1954), 7379.CrossRefGoogle Scholar
[18]Weyl, H., ‘Über die Gleichverteilung von Zahlen mod. Eins’, Math. Ann. 77 (1916), 313352.CrossRefGoogle Scholar
[19]Xiao, Y.-J., ‘Suites équiréparties associées aux automorphismes du tore’, C. R. Acad. Sci. Paris Sér I Math. 311 (1990), 579582.Google Scholar
[20]Zinterhof, P., ‘Über einige Abschätzungen bei der Approximation von Funktionen mit Gleichverteilungsmethoden’, Österreich. Akad. Wiss. Math.-Natur. Kl. S.-B. II 185 (1976), 121132.Google Scholar