Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-22T23:14:00.895Z Has data issue: false hasContentIssue false

Equidistant permutation arrays: a bound

Published online by Cambridge University Press:  09 April 2009

G. H. J. Van Rees
Affiliation:
Department of Mathematics University of ManitobaWinnipeg, Manitoba R3T 2N2, Canada
S. A. Vanstone
Affiliation:
Department of Mathematics St. Jerome's College University of WaterlooWaterloo, Ontario N2L 3G1, Canada
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

An equidistant permutation array is a ν × r array A(r, λ;ν) defined on a r-set X such that every row of A is a permutation of X and any two distinct rows agree in precisely λ common columns. Define In this paper, we show that where n = r − λ. Certain results pertaining to irreducible equidistant permutation arrays are also established.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1982

References

[1]Deza, M., ‘Une propriété extrémale des plans projectifs finis dans une classe de codes equidistants’, Discrete Math. 6 (1973), 343352.CrossRefGoogle Scholar
[2]Deza, M., Mullin, R. C. and Vanstone, S. A., ‘Room squares and equidistant permutation arrays’, Ars Combinatoria 2 (1976), 235244.Google Scholar
[3]Hall, J. I., ‘Bounds for equidistant codes and partial projective planes’, Discrete Math. 17 (1977), 8594.CrossRefGoogle Scholar
[4]Heinrich, K. and van Rees, G. H. J., ‘Some constructions for equidistant permutation arrays for index one’, Utilitas Math. 13, 193200.Google Scholar
[5]Heinrich, K., van Rees, G. H. J. and Wallis, W. D., ‘A general construction for equidistant permutation arrays’, Proc. of Conference on Graph Theory and Related Topics, in honour of W. T. Tutte, pp. 247252.Google Scholar
[6]McCarthy, D. and Vanstone, S. A., ‘On the maximum number of equidistant permutations’, J. Stat. Plann. Inference.Google Scholar
[7]Mullin, R. C. and Nemeth, E., ‘An improved upper bound for equidistant permutation arrays’, Utilitas Math. 13 (1978), 7785.Google Scholar
[8]Mullin, R. C. and Vanstone, S. A., ‘On a theorem of Totten’, J. Austral. Math. Soc. Ser. A 22 (1976), 494500.CrossRefGoogle Scholar
[9]van Rees, G. H. J., The role of ( r, Λ)-designs in some combinatorial configurations, Ph. D. Thesis, Waterloo.Google Scholar
[10]Vanstone, S. A., ‘Irreducible regular pairwise balanced designs’. Utilitas Math. 15 (1979), 249259.Google Scholar
[11]Vanstone, S. A., ‘The asymptotic behaviour of equidistant permutation arrays’, Canad. J. Math. 31 (1979), 4548.Google Scholar
[12]Vanstone, S. A. and McCarthy, D., ‘(r, λ)-designs and finite projective planes’, Utilitas Math. 11 (1977), 5771.Google Scholar
[13]Mathon, R. and Vanstone, S. A., ‘On the existence of doubly resolvable Kirkman triple systems and equidistant permutation arrays’, Discrete Math. 30 (1980), 157172.CrossRefGoogle Scholar