Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-23T18:23:14.740Z Has data issue: false hasContentIssue false

Direct and converse inequalities for positive linear operators on the positive semi-axis

Published online by Cambridge University Press:  09 April 2009

José A. Adell
Affiliation:
Departamento de Métodos Estadísticos, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain e-mail: [email protected], [email protected]
Carmen Sangüesa
Affiliation:
Departamento de Métodos Estadísticos, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain e-mail: [email protected], [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We consider positive linear operators of probabilistic type L1f acting on real functions f defined on the positive semi-axis. We deal with the problem of uniform convergence of L1f to f, both in the usual sup-norm and in a uniform Lp type of norm. In both cases, we obtain direct and converse inequalities in terms of a suitable weighted first modulus of smoothness of f. These results are applied to the Baskakov operator and to a gamma operator connected with real Laplace transforms, Poisson mixtures and Weyl fractional derivatives of Laplace transforms.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1999

References

[1]Adell, J. A. and de la Cal, J., ‘On the uniform convergence of normalized Poisson mixtures to their mixing distribution’, Statist. Probab. Lett. 18 (1993), 227232.CrossRefGoogle Scholar
[2]Adell, J. A. and de la Cal, J., ‘Approximating gamma distributions by normalized negative binomial distributions’, J. Appl. Probab. 31(1994), 391400.CrossRefGoogle Scholar
[3]Adell, J. A. and de la Cal, J., ‘Bernstein-type operators diminish the φ-variation’, Consir. Approx. 12 (1996), 489507.Google Scholar
[4]Billingsley, P., Probability and measure (Wiley, New York, 1986).Google Scholar
[5]Bingham, N. H., Goldie, C. M. and Teugels, J. L., Regular variation, Encyclopedia Math. Appl. 27 (Cambridge Univ. Press, Cambridge, 1987).CrossRefGoogle Scholar
[6]Chen, W. Z. and Zhou, M., ‘Limiting operators for some operator sequences of probabilistic type’, Math. Proc. Cambridge Philos. Soc. 121 (1997), 547554.CrossRefGoogle Scholar
[7]Vecchia, B. Della, ‘Direct and converse results by rational operators’, Constr. Approx. 12 (1996), 271285.CrossRefGoogle Scholar
[8]Ditzian, Z. and Totik, V., Modulus of smoothness (Springer, New York, 1987).CrossRefGoogle Scholar
[9]Khan, R. A., ‘Some probabilistic methods in the theory of approximation operators’, Acta Math. Hungar. 39 (1980), 193203.CrossRefGoogle Scholar
[10]Lupas, A., Mache, D. H. and Müller, M. W., ‘Weighted Lp-approximation of derivatives by the method of gamma operators’, Result. Math. 16 (1995), 277286.CrossRefGoogle Scholar
[11]Lupas, A. and Müller, M. W., ‘Approximationseigenschaften der Gammaoperatoren’, Math. Z. 98 (1967), 208226.CrossRefGoogle Scholar
[12]Mathai, A. M., A handbook of generalized special functions for statistical and physical sciences (Oxford Univ. Press, New York, 1993).Google Scholar
[13]Miller, K. S. and Ross, B., An introduction to the fractional calculus and fractional differential equations (Wiley, New York, 1993).Google Scholar
[14]Totik, V., ‘The gamma operators in Lp spaces’, Publ. Math. Debrecen 32 (1985), 4355.CrossRefGoogle Scholar
[15]Widder, D. V., The Laplace transform (Princeton Univ. Press, Princeton, 1946).Google Scholar
[16]Willmot, G. E., ‘Asymptotic tail behavior of Poisson mixtures with applications’, Adv. in Appl. Probab. 22 (1990), 147159.CrossRefGoogle Scholar