Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-11T04:03:38.020Z Has data issue: false hasContentIssue false

Cotorsion modules and relative pure-injectivity

Published online by Cambridge University Press:  09 April 2009

Lixin Mao
Affiliation:
Department of Basic Courses, Nanjing Institute of Technology, Nanjing 210013, China, and Department of Mathematics, Nanjing University, Nanjing 210093, China, e-mail: [email protected]
Nanqing Ding
Affiliation:
Department of Mathematics, Nanjing University, Nanjing 210093, China, e-mail: nqding@ nju.edu.cn
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let R be a ring. A right R-module C is called a cotorsion module if Ext1R (F, C) = 0 for any flat right R-module F. In this paper, we first characterize those rings satisfying the condition that every cotorsion right (left) module is injective with respect to a certain class of right (left) ideals. Then we study relative pure-injective modules and their relations with cotorsion modules.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2006

References

[1]Anderson, F. W. and Fuller, K. R., Rings and Categories of Modules (Springer, Berlin, 1974).CrossRefGoogle Scholar
[2]Asensio, P. A. Guil and Herzog, I., ‘Left cotorsion rings’, Bull. London Math. Soc. 36 (2004), 303–.CrossRefGoogle Scholar
[3]Asensio, P. A. Guil and Herzog, I., ‘Sigma-cotorsion rings’, Adv. Math. 191 (2005), 1128.CrossRefGoogle Scholar
[4]Azumaya, G., ‘Finite splitness and finite projectivity’, J. Algebra 106 (1987), 114134.CrossRefGoogle Scholar
[5]Baccella, G., ‘On -semisimple rings. A study of the socle of a ring’, Comm. Algebra 8 (1980), 889909.CrossRefGoogle Scholar
[6]Bican, L., Bashir, E. and Enochs, E. E., ‘All modules have flat covers’, Bull. London Math. Soc. 33 (2001), 385390.CrossRefGoogle Scholar
[7]Ding, N. Q., ‘On envelopes with the unique mapping property’, Comm. algebra 24 (1996), 14591470.CrossRefGoogle Scholar
[8]Dung, N. V. and Smith, P. F., ‘On semi-artinian V-modules’, J. Pure Appl. Algebra 82 (1992), 2737.CrossRefGoogle Scholar
[9]Enochs, E. E., ‘Flat covers and flat cotorsion modules’, Proc. Amer. Math. Soc. 92 (1984), 179184.CrossRefGoogle Scholar
[10]Enochs, E. E. and Jenda, O. M. G., Relative Homological Algebra (Walter de Gruyter, Berlin, 2000).CrossRefGoogle Scholar
[11]Faith, C., Lectures on Injective Modules and Quotient Rings, Lecture Notes in Math. 49 (Springer, Berlin, 1967).CrossRefGoogle Scholar
[12]Kasch, F., Modules and Rings (Academic Press, London, 1982).Google Scholar
[13]Krause, H. and Saorín, M., ‘On minimal approximations of modules’, Contemp. Math. 229 (1998), 227236.CrossRefGoogle Scholar
[14]Lam, T. Y., Lectures on Modules and Rings (Springer, Berlin, 1999).CrossRefGoogle Scholar
[15]Lee, B. L., ‘h-divisible modules’, Comm. Algebra 31 (2003), 513525.CrossRefGoogle Scholar
[16]Mao, L. X. and Ding, N.Q., ‘Notes on cotorsion modules’, Comm. Algebra 33 (2005), 349360.CrossRefGoogle Scholar
[17]Ming, R. Yue Chi, ‘On V-rings and prime rings’, J. Algebra 62 (1980), 1320.CrossRefGoogle Scholar
[18]Nicholson, W. K. and Watters, J. F., ‘Rings with projective socle’, Proc. Amer. Math. Soc. 102 (1988), 443450.CrossRefGoogle Scholar
[19]Nicholson, W. K. and Yousif, M. F., Quasi-Frobenius Rings, Cambridge Tracts in Math. 158 (Cambridge University Press, Cambridge, 2003).CrossRefGoogle Scholar
[20]Puninski, G. and Rothmaler, P., ‘When every finitely generated flat module is projective’, J. Algebra 277 (2004), 542558.CrossRefGoogle Scholar
[21]Rotman, J. J., An Introduction to Homological Algebra (Academic Press, New York, 1979).Google Scholar
[22]Rozas, J. R. García and Torrecillas, B., ‘Relative injective covers’, Comm. Algebra 22 (1994), 29252940.CrossRefGoogle Scholar
[23]Smith, P. F., ‘Injective modules and prime ideals’, Comm. Algebra 9 (1981), 989999.CrossRefGoogle Scholar
[24]Thani, N. M. A., ‘Pure baer injective modules’, Internat. J. Math. Math. Sci. 20 (1997), 529538.CrossRefGoogle Scholar
[25]Xu, J., Flat Covers of Modules, Lecture Notes in Math.1634 (Springer, Berlin, 1996).CrossRefGoogle Scholar
[26]Zhu, S. L., ‘On rings over which every flat left module is finitely projective’, J. Algebra 139 (1991), 311321.Google Scholar