Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-23T13:47:52.360Z Has data issue: false hasContentIssue false

Cocompleteness over coverings

Published online by Cambridge University Press:  09 April 2009

Renato Betti
Affiliation:
Dipartimento di Matematica Università di Milano via C. Saldini, 50 20133 Milano, Italy
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

For enriched categories the correct notion of limit involves indexing by a module. This paper studies the question of cocompletion for a given set of indexing modules. As well as providing a simplified treatment of cocompleteness for ordinary categories, associated sheaves and associated stacks are also included as cocompletion processes for appropriate bases. In fact the saturation of a general set of indexing modules has properties which justify our use of the term “covering” for members of the saturation.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1985

References

[1]Betti, R., ‘Bicategorie di base’, Quad 2/S (II), Ist. Mat. Univ. Milano (1981).Google Scholar
[2]Betti, R., ‘Alcune proprietà delle categorie basate su una bicategoria’, Quad. 28/S (II), Ist. Mat. Univ. Milano (1982).Google Scholar
[3]Betti, R. and Carboni, A., ‘Notion of topology for bicategories’, Cahiers Topologie Géom. Differentielle 24 (1983), 1922.Google Scholar
[4]Betti, R., Carboni, A., Street, R. H. and Walters, R. F. C., ‘Variation through enrichment’, J. Pure Appl. Algebra 29 (1983), 109127.CrossRefGoogle Scholar
[5]Borceux, F. and Kelly, G. M., ‘A notion of limit for enriched categories’, Bull. Austral. Math. Soc. 12 (1975), 4972.CrossRefGoogle Scholar
[6]Giraud, J., Cohomologie non abélienne (Springer, 1971).Google Scholar
[7]Kelly, G. M., Basic concepts of enriched category theory (Cambridge Univ. Press, 1982).Google Scholar
[8]Kock, A., ‘Limits monad in categories’, Aarhus Univ. Matematisk Preprint No. 6, (1967/1968).Google Scholar
[9]Lawvere, F. W., ‘Metric spaces, generalized logic, and closed categories’, Rend. Sem. Mat. Fis. Milano 43 (1973), 135166.CrossRefGoogle Scholar
[10]Street, R. H., ‘The comprehensive construction of free colimits’, Macquarie Math. Reports, 05 1979.Google Scholar
[11]Street, R. H., ‘Enriched categories and cohomology’, Quaestiones Math. 6 (1983), 265283.Google Scholar
[12]Tholen, W., ‘Completions of categories and shape theory’, Seminarberichte No. 12, FernUniversität, pp. 125142 (1982).Google Scholar
[13]Walters, R. F. C., ‘Sheaves on sites as Cauchy-complete categories’, J. Pure Appl. Algebra 24 (1982), 95102.CrossRefGoogle Scholar
[14]Wood, R. J., ‘Free colimits’, J. Pure Appl. Algebra 10 (1978), 7380.Google Scholar