Published online by Cambridge University Press: 09 April 2009
It is known (see, for instance, [1] p. 64, [6] p. 264) that, if A and B are bounded linear operators on a Banach space into itself (or, more generally, if A is a bounded linear operator on into a Banach space and B is a bounded linear operator on into), then AB and BA have the same spectrum except (possibly) for zero. In the present note, it is shown that AB is asymptotically quasi-compact if and only if BA is asymptotically quasi-compact, and that then any Fredholm determinant for AB is a Fredholm determinant for BA and vice versa.