Published online by Cambridge University Press: 12 March 2014
Let T be a set of axioms for a classical theory TC (e.g. abelian groups, linear order, unary function, algebraically closed fields, etc.). Suppose we regard T as a set of axioms for an intuitionistic theory TH (more precisely, we regard T as axioms in Heyting's predicate calculus HPC).
Question. Is TH decidable (or, more generally, if X is any intermediate logic, is TX decidable)? In [1] we gave sufficient conditions for the undecidability of TH. These conditions depend on the formulas of T (different axiomatization of the same TC may give rise to different TH) and on the classical model theoretic properties of TC (the method did not work for model complete theories, e.g. those of the title of the paper). For details see [1]. In [2] we gave some decidability results for some theories: The problem of the decidability of theories TH for a classically model complete TC remained open. An undecidability result in this direction, for dense linear order was obtained by Smorynski [4]. The cases of algebraically closed fields and real closed fields and divisible abelian groups are treated in this paper. Other various decidability results of the intuitionistic theories were obtained by several authors, see [1], [2], [4] for details.
One more remark before we start. There are several possible formulations for an intuitionistic theory of, e.g. fields, that correspond to several possible axiomatizations of the classical theory. Other formulations may be given in terms of the apartness relation, such as the one for fields given by Heyting [5]. The formulations that we consider here are of interest as these systems occur in intuitionistic mathematics. We hope that the present methods could be extended to the (more interesting) case of Heyting's systems [5].