Published online by Cambridge University Press: 12 March 2014
In this paper we study differential fields of characteristic 0 (with perhaps additional structure) whose theory is superstable. Our main result is that such a differential field has no proper strongly normal extensions in the sense of Kolchin [K1]. This is an approximation to the conjecture that a superstable differential field is differentially closed (although we believe the full conjecture to be false). Our result improves earlier work of Michaux [Mi] who proved that a (plain) differential field with quantifier elimination has no proper Picard-Vessiot extension. Our result is a generalisation of Michaux's, due to the fact that any plain differential field K with quantifier elimination is ω-stable. (Any quantifier free type over K defines a unique type over K in the sense of dc(k), the differential closure of K, and as we mention below the theory of differentially closed fields is ω-stable.) The proof of our main result depends on (i) Kolchin's theory [K3] which states that any strongly normal extension L of an algebraically closed differential field K is generated over K by an element η of some algebraic group G defined over CK, the constants of K, where η satisfies some specific differential equations over K related to invariant differential forms on G (η is “G-primitive” over K), and (ii) the fact that a superstable field has a unique generic type which is semiregular.