Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-22T20:19:25.445Z Has data issue: false hasContentIssue false

Sous-groupes de Carter dans les groupes de rang de Morley fini

Published online by Cambridge University Press:  12 March 2014

Olivier Frécon*
Affiliation:
Département de Mathématiques, Université de la Réunion, 15, Avenue René Cassin, 97715 Saint-Denis Messag Cedex 9, France, E-mail: [email protected]

Résumé

A Carter subgroup is a self-normalizing locally nilpotent subgroup. For studying these subgroups in groups of finite Morley rank, we introduce the new notion of a locally closed subgroup. We show that every solvable group of finite Morley rank has a unique conjugacy class of Carter subgroups.

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

RÉFÉRENCES

[1]Altinel, T., Cherlin, G., Corredor, L.-J., et Nesin, A., A Hall theorem for ω-stable groups, Journal of the London Mathematical Society (2), vol. 57 (1998), no. 2, pp. 385397.Google Scholar
[2]Borovik, A. V. et Nesin, A., Groups of finite Morley Rank, Oxford Logic Guides, 26, The Clarendon Press, Oxford University Press, New York, 1994.CrossRefGoogle Scholar
[3]Bryant, R. M., Groups with the minimal condition on centralizers, Journal of Algebra, vol. 60 (1979), no. 2. pp. 371383.CrossRefGoogle Scholar
[4]Bryant, R. M. et Hartley, B., Periodic locally soluble groups with the minimal condition on centralizers, Journal of Algebra, vol. 61 (1979), no. 2, pp. 328334.Google Scholar
[5]Carter, R. W., Nilpotent self-normalizing subgroups of soluble groups, Mathematische Zeitschrift, vol. 75 (1960/1961), pp. 136139.CrossRefGoogle Scholar
[6]Fischer, B., Gaschütz, W., et Hartley, B., Injektoren endlicher auflösbarer Gruppen, Mathematische Zeitschrift. vol. 102 (1967), pp. 337339.CrossRefGoogle Scholar
[7]Frécon, O., Sous-groupes anormaux dans les groupes de rang de Morley fini résolubles, Journal of Algebra, vol. 229 (2000), no. 1, pp. 118152.Google Scholar
[8]Frécon, O., Sous-groupes de Hall généralisés dans les groupes de rang de Morley fini résolubles, Journal of Algebra, vol. 233 (2000), no. 1, pp. 253286.CrossRefGoogle Scholar
[9]Gardiner, A. D., Hartley, B., et Tomkinson, M. J., Saturated formations and Sylow structure in locally finite groups, Journal of Algebra, vol. 17 (1971), pp. 177211.CrossRefGoogle Scholar
[10]Gaschütz, W., Zur Theorie der endlichen auflösbaren Gruppen, Mathematische Zeitschrift, vol. 80 (1963), pp. 300305.Google Scholar
[11]Hartley, B., Sylow theory in locally finite groups, Compositio Mathematica, vol. 25 (1972), pp. 263280.Google Scholar
[12]Hartley, B. et Tomkinson, M. J., Carter subgroups and injectors in a class of locally finite groups, Rendiconti del Seminario Matematico delta Università di Padova. vol. 79 (1988), pp. 203212.Google Scholar
[13]Macintyre, A.. On ω1-categorical theories of abelian groups, Fundamenta Mathematicae, vol. 70 (1971), no. 3, pp. 253270.CrossRefGoogle Scholar
[14]Poizat, B., Groupes stables. Une tentative de conciliation entre la géométric algébrique et la logique mathématique, Nur Al-mantiq Wal-Ma'rifah, Villeurbanne, 1987.Google Scholar
[15]Robinson, D. J. S., A course in the theory of groups, Graduate Texts in Mathematics, vol. 80, Springer-Verlag, New York, 1993.Google Scholar
[16]Wagner, F. O., Nilpotent complements and Carter subgroups in stable ℜ-groups, Archive for Mathematical Logic, vol. 33 (1994), no. 1, pp. 2334.Google Scholar
[17]Wehrfritz, B. A. F., Sylow theorems for periodic linear groups, Proceedings of the London Mathematical Society, vol. 18 (1968), no. 3, pp. 125140.CrossRefGoogle Scholar