Published online by Cambridge University Press: 12 March 2014
A model is called minimal if it does not contain a proper elementary submodel. A class of models is called Σ11(Π11 resp. elementary) if it is axiomatized by a sentence with σ in and some string of predicate symbols. All languages considered are assumed to be countable. For each model we shall define in a natural way its rank, denoted by rk (), which is an ordinal or ∞. Intuitively speaking, rk () is the least upper bound for the number of steps needed to define the elements of by first order formulas; e.g. we shall have rk((ω, <)) = 1 (each element is f.o. definable), rk ((Z, <)) = 2 (no element is f.o. definable, each element is f.o. definable using any other element as a parameter), rk ((Q, <) ) = ∞ (no element is f.o. definable by any number of steps). This notion of rank leads to a useful game theoretic characterization of minimal models which we apply to show that the Π11 class of minimal models is not Σ11.