No CrossRef data available.
Article contents
The metamathematics of model theory: Discovering language in action
Published online by Cambridge University Press: 12 March 2014
Abstract
We discuss the problem of defining the collection of first-order elementary classes in terms of the natural topological space of countable models.
- Type
- Research Article
- Information
- Copyright
- Copyright © Association for Symbolic Logic 1981
References
REFERENCES
[2]Burgess, J. P., Two selection theorems, Bulletin de la Société Mathématique de Grèce, vol. 18 (1977), pp. 121–126.Google Scholar
[3]Craig, W., Boolean notions extended to higher dimensions, The theory of models (Addison, , Henkin, , Tarski, , Editors), North-Holland, Amsterdam, 1972.Google Scholar
[5]Gurevich, Y., Monadic theory of order and topology 1, Israel Journal of Mathematics, vol. 27(1977), pp. 299–319.CrossRefGoogle Scholar
[6]Keisler, H. J., Finite approximations to infinitely long formulas, The theory of models, op. cit.Google Scholar
[7]Kuratowski, K., Les types d'ordre définissables et les ensembles boréliens, Fundamenta Mathematicae, vol. 28 (1937), pp. 97–100.CrossRefGoogle Scholar
[8]Lopez-Escobar, E. G. K., An interpolation theorem for denumerably long formulas, Fundamenta Mathematicae, vol. 57 (1965), pp. 253–272.CrossRefGoogle Scholar
[9]Miller, D. E., The invariant Πα0 separation principle, Transactions of the American Mathematical Society, vol. 242 (1978), pp. 185–204.Google Scholar
[10]Miller, D. E., An application of invariant sets to global definability, this Journal, vol. 44 (1979) pp. 9–14.Google Scholar
[11]Scott, D., Logic with denumerably long formulas and finite strings of quantifiers, Theory of models, op. cit.Google Scholar
[13]Vaught, R. L., Invariant sets in topology and logic, Fundamenta Mathematicae, vol. 82 (1974), pp. 269–294.CrossRefGoogle Scholar