Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-08T22:57:41.257Z Has data issue: false hasContentIssue false

Meeting of the Association for Symbolic Logic, Chicago, 1989

Published online by Cambridge University Press:  12 March 2014

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Other
Copyright
Copyright © Association for Symbolic Logic 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Sobel, Jordan Howard, Gödel's ontological proof, On being and saying. Essays for Richard Cartwright (Thomson, Judith Jarvis, editor), MIT Press, Cambridge, Massachusetts, 1987, pp. 241261.Google Scholar
[2]Cocchiarella, Nino B., A completeness theorem in second order modal logic, Theoria, vol. 35 (1969), pp. 81103.CrossRefGoogle Scholar
[3]Anderson, Alan R., A reduction of deontic logic to alethic modal logic, Mind, vol. 67 (1958), pp. 100103.CrossRefGoogle Scholar
[1]Information processing systems—Concepts and terminology for the conceptual schema and the information base, Technical Report ISO/TR 9007, International Organization for Standardization, 1987.Google Scholar
[2]Lambek, J. and Scott, P. J., Introduction to higher order categorical logic, Cambridge University Press, Cambridge, 1986.Google Scholar
[1]Bostock, D., Necessary truth and a priori truth, Mind, vol. 97 (1988), pp. 343379.CrossRefGoogle Scholar
[2]Deutsch, H., On direct reference, Themes from Kaplan (Almog, J.et al., editors), Oxford University Press, Oxford, 1988, pp. 167195.Google Scholar
[3]Garson, J., Quantification in modal logic, Handbook of philosophical logic, vol. II (Gabbay, D. and Guenthner, F., editors), Reidel, Dorbrecht, 1984, pp. 249307.CrossRefGoogle Scholar
[4]Zalta, Edward N., Logical and analytic truths that are not neccessary, The Journal of Philosophy, vol. 85 (1988), pp. 5774.CrossRefGoogle Scholar
[1]Mates, B., Elementary logic, 2nd ed., Oxford University Press, Oxford, 1972.Google Scholar
[2]Stalnaker, R., A theory of conditionals, Studies in logical theory (Rescher, N., editor), Blackwell, Oxford, 1968, pp. 98112.Google Scholar
[3]Stalnaker, R., Indicative conditionals, Philosophia, vol. 5 (1975), pp. 269286.CrossRefGoogle Scholar
[4]Thomason, R., A Fitch-style formulation of conditional logic, Logique et Analyse, vol. 52 (N.S. 13) (1970), pp. 397412.Google Scholar
[P]Prest, Mike, Model theory and modules, London Mathematical Society Lecture Note Series, vol. 130, Cambridge University Press, London, 1988.CrossRefGoogle Scholar
[1]Aqvist, Lennart, Deontic logic, Handbook of philosophical logic (Gabbay, D. and Guenthner, F., editors), vol. II, Reidel, Dordrecht, 1984, pp. 605714.CrossRefGoogle Scholar
[2]Hanson, William H., Semantics for deontic logic, Logique et Analyse, vol. 8 (1965), pp. 177190.Google Scholar
Fraassen, Bas van [1968[, Presupposition, implication, and self-reference, The Journal of Philosophy, vol. 65, no. 5, pp. 136152.CrossRefGoogle Scholar
Fraassen, Bas van [1970], Truth and paradoxical consequences, in Martin [1970A], pp. 1332.Google Scholar
Kripke, Saul [1975], Outline of a theory of truth, The Journal of Philosophy, vol. 72, pp. 690716; reprinted in Martin [1984], pp. 53–81.CrossRefGoogle Scholar
Martin, Robert L. [1970], A category solution to the Liar, Philosophical Review, vol. 76, pp. 279311.CrossRefGoogle Scholar
Martin, Robert L. (editor) [1970A], The paradox of the Liar, Yale University Press, New Haven, Connecticut.Google Scholar
Martin, Robert L. (editor) [1984], Recent essays on truth and the Liar paradox, Oxford University Press, Oxford.Google Scholar
Martin, Robert L. and Woodruff, Peter W. [1975], On representing ‘True-in-L’ in L, Philosophia, vol. 5, pp. 213217; reprinted in Martin [1984], pp. 47–51.CrossRefGoogle Scholar
Smullyan, Raymond [1957], Language in which self-reference is possible, this Journal, vol. 19, pp. 3740.Google Scholar
[1]Bagemihl, F., The existence of an everywhere dense independent set, Michigan Mathematical Journal, vol. 20 (1973), pp. 12.CrossRefGoogle Scholar
[2]Gibbon, G., Set mappings of unrestricted order, Bulletin of the Australian Mathematical Society, vol. 28 (1983), pp. 199206.CrossRefGoogle Scholar
[3]Newelski, L., Pawlikowski, J., and Seredyński, W., Infinite free set for small measure set mappings, Proceedings of the American Mathematical Society, vol. 100 (1987), pp. 335339.CrossRefGoogle Scholar
[4]Piotrowski, Z. and Szymański, A., Some remarks on category in topological spaces, Proceedings of the American Mathematical Society, vol. 101 (1987), pp. 156160.CrossRefGoogle Scholar
[1]Kaplansky, I., Infinite abelian groups, University of Michigan Press, Ann Arbor, Michigan, 1954.Google Scholar
[2]Richter, L. J., Degrees of structures, this Journal, vol. 46 (1981), pp. 723731.Google Scholar
[3]Rogers, H. Jr., Theory of recursive functions and effective computability, McGraw-Hill, New York, 1967.Google Scholar
[1]Freiling, Chris, Axioms of symmetry: throwing darts at the real number line, this Journal, vol. 51 (1986), pp. 190200.Google Scholar
[2]Simms, John C., Traditional Cavalieri principles applied to the modern notion of area, Journal of Philosophical Logic (to appear).Google Scholar
[1]Schmerl, Ulf R., A fine structure generated by reflection formulas over primitive recursive arithmetic, Logic Colloquium '78, North-Holland, Amsterdam, 1979, pp. 335350.Google Scholar
[1]Keisler, H. J., A survey of ultraproducts, Logic, methodology and philosophy of science (Bar-Hillel, Y., editor), North-Holland, Amsterdam, 1965, pp. 112126.Google Scholar
Anellis, I. H., The Abian paradox, Abstracts of papers presented to the American Mathematical Society, vol. 9 (1988), p. 9; correction, I. H. Anellis, The Abian paradox, Abstracts of papers presented to the American Mathematical Society, vol. 9 (1988), p. 203.Google Scholar
[1]Cantor, G., Zur Begründung der transfiniten Mengenlehre. I, Mathematische Annalen, vol. 46 (1895), pp. 504506.CrossRefGoogle Scholar
[2]Hausdorff, F., Grundzüge einer Theorie der geordneten Mengen, Mathematische Annalen, vol. 65 (1908), pp. 488490.CrossRefGoogle Scholar
[3]Hausdorff, F., Grundzüge der Mengenlehre, Veit, Leipzig, 1914; reprint, Chelsea, New York, 1949, pp. 99–100 and 182–183.Google Scholar
[4]Hausdorff, F., Mengenlehre, Gruyter, Berlin, 1927, pp. 5051.Google Scholar
[5]Huntington, E. V., The continuum as a type of order: an exposition of the modern theory, Annals of Mathematics, vol. 6 (1904/1905), pp. 178179.Google Scholar