Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-08T23:18:13.727Z Has data issue: false hasContentIssue false

European Summer Meeting of the Association for Symbolic Logic (Logic Colloquium '88), Padova, 1988

Published online by Cambridge University Press:  12 March 2014

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Other
Copyright
Copyright © Association for Symbolic Logic 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCE

[1]van den Dries, L., Elimination theory for the ring of algebraic integers, Journal für die Reine und Angewandte Mathematik, vol. 388 (1988), pp. 189205.Google Scholar
Mundici, D., Mapping abelian l-groups with strong unit one-one into MV algebras, Journal of Algebra, vol. 98 (1986), pp. 7681.CrossRefGoogle Scholar
Mundici, D., Every abelian l-group with two positive generators is ultrasimplicial, Journal of Algebra, vol. 105 (1987), pp. 236241.CrossRefGoogle Scholar
Mundici, D., Free products in the category of abelian l-groups with strong unit, Journal of Algebra, vol. 113 (1988), pp. 89109.CrossRefGoogle Scholar
Mundici, D., Interpretation of AF C*-algebras in Łukasiewicz sentential calculus, Journal of Functional Analysis, vol. 65 (1986), pp. 1563.CrossRefGoogle Scholar
Mundici, D., The Turing complexity of AF C*-algebrqs with lattice-ordered K0, Computation theory and logic (Börger, E., editor), Lecture Notes in Computer Science, vol. 270, Springer-Verlag, Berlin, 1987, pp. 256264.CrossRefGoogle Scholar
Mundici, D., Satisfiability in many-valued sentential logic is NP-complete, Theoretical Computer Science, vol. 52 (1987), pp. 145153.CrossRefGoogle Scholar
Mundici, D., The derivative of truth in Łukasiewicz sentential calculus, Methods and applications of mathematical logic (proceedings of the seventh Latin American symposium, Campinas, 1985), Contemporary Mathematics, vol. 69, American Mathematical Society, Providence, Rhode Island, 1988, pp. 209227.Google Scholar
Mundici, D., Farey stellar subdivisions, ultrasimplicial groups, and K0 of AF C*-algebras, Advances in Mathematics, vol. 68 (1988), pp. 2339.CrossRefGoogle Scholar
[1]Sambin, G., Intuitionistic formal spaces—a first communication, Mathematical logic and its applications (proceedings, Druzhba, 1984; Skordev, D., editor), Plenum Press, New York, 1987, pp. 187204.Google Scholar
[1]Girard, J.-Y., Linear logic, Theoretical Computer Science, vol. 50 (1987), pp. 1101.CrossRefGoogle Scholar
[2]Girard, J.-Y. and Lafont, Y., Linear logic and lazy computation, TAPSOFT '87. Vol. 2, Lecture Notes in Computer Science, vol. 250, Springer-Verlag, Berlin, 1987, pp. 5266.CrossRefGoogle Scholar
[1]Church, Alonzo, Theneed for abstract entities in semantic analysis, Daedalus (Proceedings of the American Academy of Arts and Sciences), vol. 80 (1951), pp. 100112.Google Scholar
[2]Church, Alonzo, Intensional isomorphism and identity of belief, Philosophical Studies, vol. 5 (1954), pp. 6573.CrossRefGoogle Scholar
Martin, D. A. and Steel, J. R., A proof of projective determinacy, Journal of the American Mathematical Society, vol. 2 (1989), pp. 71125.CrossRefGoogle Scholar
Martin, D. A. and Steel, J. R., Iteration trees (to appear).Google Scholar
[CMD]Cherlin, G., Macintyre, A. and van den Dries, L., The elementary theory of regularly closed fields, Journal für die Reine und Angewandte Mathematik (to appear).Google Scholar
[JK]Jarden, J. and Kiehne, U., The elementary theory of Algebraic fields of finite corank, Inventiones Mathematical vol. 30 (1975), pp. 275294.CrossRefGoogle Scholar
Girard, J.-Y. [1987[, Linear logic, Theoretical Computer Science, vol. 50, pp. 1101.CrossRefGoogle Scholar
Ketonen, J. and Weyhrauch, R. [1984], A decidahle fragment of predicate calculus, Theoretical Computer Science, vol. 32, pp. 297307.CrossRefGoogle Scholar
Kamp, J. A. W., On tense logic and the theory of order, Ph.D. dissertation, UCLA (as cited in Martin, R. and Nef, F.: Temps linguistique et temps logique, Langages 64, 1981, pp. 720; and in Chapters II.1. and II.2 of D. Gabbay and F. Guenthner (editors), Handbook of philosophical logic, Reidel, Dordrecht, 1984).CrossRefGoogle Scholar
Kripke, S. A., A completeness theorem in modal logic, this Journal, vol. 24 (1959), pp. 114.Google Scholar
Montague, R., The proper treatment of quantification in ordinary English, Formal philosophy (Thomason, R. H., editor), Yale University Press, New Haven, Connecticut, 1974.Google Scholar
Ruzsa, I., Intensional logic and semantic value gaps, Logique et Analyse, vol. 29 (114) (1986), pp. 187203.Google Scholar
[1]Boffa, M., ZFJ and the consistency problem for NF, Jahrbuch der Kurt Gödel Gesellschaft, vol. 1 (1988), pp. 102106.Google Scholar
[2]Jensen, R. B., On the consistency of a slight (?) modification of Quine's “New Foundations”, Synthese, vol. 19 (1968/1969), pp. 250263.CrossRefGoogle Scholar
[1]Brown, Mark A., On the logic of ability, Journal of Philosophical Logic, vol. 17 (1988), pp. 126.CrossRefGoogle Scholar
[2]Brown, Mark A., On the logic of action, contributed paper at the 1987/88 Annual Meeting of the Association for Symbolic Logic, New York, 12 1987; abstract in this Journal, vol. 53 (1988), pp. 1290–1291.Google Scholar
[3]Kenny, Anthony, Human abilities and dynamic modalities, Essays on explanation and understanding (Manninen, J. and Tuolema, R., editors), Reidel, Dordrecht, 1976, pp. 209232.CrossRefGoogle Scholar
[1]Ahlbrandt, G. and Ziegler, M., Quasi-finitely axiomatizable totally categorical theories, Annals of Pure and Applied Logic, vol. 30 (1986), pp. 6382.CrossRefGoogle Scholar
[2]Jech, T., The axiom of choice, North-Holland, Amsterdam, 1973.Google Scholar
[3]Brunner, N. and Rubin, J. E., Permutation models and topological groups, Rendiconti del Seminario Matematico dell'Università di Padova, vol. 76 (1986), pp. 149161.Google Scholar
[1]Buszkowski, W., Erotetic completeness, Logic, methodology and philosophy of science VIII, Abstracts, vol. 5, part 3, “Nauka”, Moscow, 1987, pp. 239241.Google Scholar
[2]Buszkowski, W., Presuppositional completeness, Studia Logica (to appear).Google Scholar
[1]Caicedo, X., A simple solution to Friedman's fourth problem, this Journal, vol. 51 (1986), pp. 778784.Google Scholar
[2]Mekler, A. H. and Shelah, S., Stationary logic and its friends, I, Notre Dame Journal of Formal Logic, vol. 26 (1985), pp. 129138.CrossRefGoogle Scholar
[3]Barwise, J. and Feferman, S. (editors), Model-theoretical logics, Springer-Verlag, Berlin, 1985.Google Scholar
de Jongh, D. H. J. and Montagna, F. [1986], Provable fixed points, Report 86-24, Mathematisch Instituut, Universiteit van Amsterdam, Amsterdam, 1986; published in Zeitschrift für Mathematische Logik undGrundlagen der Mathematik, vol. 34 (1988), pp. 229–250.Google Scholar
de Jongh, D. H. J. and Montagna, F. [1987], Much shorter proofs, Report 87-13, Mathematisch Instituut, Universiteit van Amsterdam, Amsterdam, 1987.Google Scholar
Parikh, R. [1971], Existence and feasibility in arithmetic, this Journal, vol. 36 (1971), pp. 594608.Google Scholar
[1]Davies, M. and Humberstone, L., Two notions of necessity, Philosophical Studies, vol. 38 (1980), pp. 130.CrossRefGoogle Scholar
[2]Kripke, S. A., Naming and necessity, 2nd ed., Harvard University Press, Cambridge, Massachusetts, 1981.Google Scholar
[1]Cudia, D. F., The Boltzmann principle and information systems, this Journal, vol. 53 (1988), pp. 10041005.Google Scholar
Czelakowski, J., Local deduction theorems, Studia Logica, vol. 45 (1986), pp. 337391.CrossRefGoogle Scholar
[1]Hirschfeld, J. and Wheeler, W., Forcing, arithmetic, division rings, Lecture Notes in Mathematics, vol. 454, Springer-Verlag, Berlin, 1975.CrossRefGoogle Scholar
[2]McAloon, K., Completeness theorems, incompleteness theorems and models of arithmetic, Transactions of the American Mathematical Society, vol. 239 (1978), pp. 253277.CrossRefGoogle Scholar
[3]Paris, J. and Kirby, L., Σn-collection schemas in arithmetic, Logic Colloquium '77, North-Holland, Amsterdam, 1978, pp. 199209.CrossRefGoogle Scholar
[1]Fischer-Servi, G., On Gabbay's nonmonotonic logics, Atti del convegno “Temi e prospettive della logica e delta scienza contemporanee” (Cesena, 1987).Google Scholar
[2]Fischer-Servi, G., Logiche non monotone su base intuizionista, talk presented at the third meeting on logic programming, 05 1988.Google Scholar
[3]Gabbay, D., Intuitionistic basis for nonmonotonic logic, Sixth conference on automated deduction (New York, 1982), Lecture Notes in Computer Science, vol. 138, Springer-Verlag, Berlin, 1982, pp. 260273.CrossRefGoogle Scholar
[1]Fenstad, J. E., General recursion theory—an axiomatic approach, Springer-Verlag, Berlin, 1980.CrossRefGoogle Scholar
[2]Gabrovsky, P. N., On the role of selection operators in general recursion theory, talk presented at the eighth international congress of logic, methodology and philosophy of science, Moscow, 1987.Google Scholar
[3]Moschovakis, Y. N., Axioms for computation theories. Logics Colloquium 69, North-Holland, Amsterdam, 1971, pp. 199255.CrossRefGoogle Scholar
[1]Solovay, R. M., Provability interpretations of modal logic, Isreal Journal of Mathematics, vol. 25 (1976), pp. 287304.CrossRefGoogle Scholar
[2]Boolos, G., The unprovability of consistency, Cambridge University Press, Cambridge, 1979.Google Scholar
[3]Smoryński, C., Self-reference and modal logic, Springer-Verlag, Berlin, 1985.CrossRefGoogle Scholar
[Gor]Goranko, V., Modal definability in enriched languages, Notre Dame Journal of Formal Logic (to appear).Google Scholar
[GPT]Gargov, G., Passy, S., and Tinchev, T., Modal environment for Boolean speculations, Mathematical logic and its applications (Druzhba, 1986; Skordev, D., editor), Plenum Press, New York, 1987, pp. 253263.CrossRefGoogle Scholar
[Hum]Humberstone, I., Inaccessible worlds, Notre Dame Journal of Formal Logic, vol. 24 (1983), pp. 346352.CrossRefGoogle Scholar
[1]Halldén, S., The logic of nonsense, Uppsala Universitets Årsskrift, Heft 9 (1949).Google Scholar
[2]Halkowska, K., On algebra connected with notion of satisfiability in theories with conditional definitions, Polish Academy of Sciences, Institute of Philosophy and Sociology, Bulletin of the Section of Logic, vol. 4 (1975), pp. 154162.Google Scholar
[3]Halkowska, K., On some connections between conditional algebras and the systems of nonsense-logics, Universal algebra (Esztergom, 1977), Colloquia Mathematica Societatis János Bolyai, vol. 29, North-Holland, Amsterdam, 1982, pp. 361371.Google Scholar
[4]Halkowska, K., On some three-valued propositional logics, Acta Universitatis Hratislaviensis (to appear). (Polish)Google Scholar
[5]Słupecki, J. and Piróg-Rzepecka, K., An extension of the algebra of sets, Studia Logica, vol. 31 (1973), pp. 737.CrossRefGoogle Scholar
[1]Kochen, S., Integer valued rational functions over the p-adic numbers: a p-adic analogue of the theory of real fields, Number theory, Proceedings of Symposia in Pure Mathematics, vol. 12, American Mathematical Society, Providence, Rhode Island, 1969, pp. 5773.CrossRefGoogle Scholar
[2]Delzell, C., A continuous, constructive solution to Hilbert's 17th problem, Inventiones Mathematical vol. 76 (1984), pp. 365384.CrossRefGoogle Scholar
[1]Burris, S. and McKenzie, R., Decidability and Boolean representations, Memoirs of the American Mathematical Society, no. 246 (1981).Google Scholar
[1]Ivanov, L. L., Algebraic recursion theory, Wiley, Chichester, 1986.Google Scholar
[2]Ivanov, L. L., Skordev spaces, Anniversaire de l'Université de Sofia, livre 1 (to appear).Google Scholar
[3]Skordev, D. G., Combinatory spaces and recursiveness in them, Izdatel'stvo Bolgarskoĭ Akademii Nauk, Sofia, 1980. (Russian; English summary)Google Scholar
[1]Gaifman, H. and Dimitracopoulos, C., Fragments of Peano's arithmetic and the MRDP theorem, Logic and algorithmic (Zürich, 1980), Monographies de l'Enseignement Mathématique, vol. 30, Université de Genève, Geneva, 1982, pp. 187206.Google Scholar
[2]Wilkie, A. J., Some results and problems on weak systems of arithmetic, Logic Colloquium '77, North-Holland, Amsterdam, 1978, pp. 285296.CrossRefGoogle Scholar
[3]Wilmers, G., Bounded existential induction, this Journal, vol. 50 (1985), pp. 7290.Google Scholar
[1]Kotlarski, H., Bounded induction and satisfaction classes, Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, vol. 32 (1986), pp. 531544.CrossRefGoogle Scholar
[2]Kotlarski, H. and Ratajczyk, Z., Inductive full satisfaction classes (to appear).Google Scholar
[1]Buss, S. P., Bounded arithmetic, Ph.D. thesis, Princeton University, Princeton, New Jersey, 1985.Google Scholar
[2]Buss, S. P., Axiomatizations and conservation results for fragments of bounded arithmetic, manuscript, University of California, Berkeley, California, 1987 (24 pp.).Google Scholar
[3]Cook, S. A., Feasibly constructive proofs and the propositional calculus, Proceedings of the seventh ACM symposium on theory of computation (1975), pp. 8399.Google Scholar
[4]Cook, S. A. and Reckhow, R. A., The relative efficiency of propositional proof systems, this Journal, vol. 44 (1979), pp. 3650.Google Scholar
[5]Krajíček, J. and Pudlák, P., Propositional proof systems, the consistency of first order theories and the complexity of computations, this Journal, vol. 54 (1989), pp. 10631079.Google Scholar
[6]Takeuti, G., Proof theory, North-Holland, Amsterdam, 1975.Google Scholar
[7]Wilkie, A. J., Invited lecture at the eighth international congress on logic, methodology and philosophy of science, Moscow, 1987.Google Scholar
[1]Krynicki, M., Linear order quantifiers (to appear).Google Scholar
[2]Makowsky, J. A. and Tulipani, S., Some model theory for monotone quantifiers, Archiv für Mathematische Logik und Grundlagenforschung, vol. 18 (1977), pp. 115134.CrossRefGoogle Scholar
[3]Pawlak, Z., Rough logic (to appear).Google Scholar
[4]Szczerba, L. W., Rough quantifiers, Bulletin of the Polish Academy of Sciences. Mathematics, vol. 37 (1987), pp. 251254.Google Scholar
[1]Kuck, C., Nonmonotonic learning automata, Verlag Ferdinand Schöningh, Paderborn, 1984.Google Scholar
[2]Kuck, C., Knowledge engineering by quantum logic, Terminology and knowledge engineering (Czap, Hans and Galinski, Christian, editors), Indeks Verlag, Frankfurt, 1987, pp. 5768.Google Scholar
[3]Lepowsky, J., Lectures on Kac-Moody Lie algebras, Université Paris-VI, Paris, Spring, 1978.Google Scholar
[4]von Weizsäcker, C. F., Aufbau der Physik, Hanser, München, 1985.Google Scholar
[1]Arslanov, M. M., Structural properties of the degrees below 0, Doklady Akademii Nauk SSSR, vol. 283 (1985), pp. 270273; English translation, Soviet Mathematics—Doklady, vol. 32 (1985), pp. 58–62.Google Scholar
[2]Cooper, S. B., On a theorem of C. E. M. Yates, handwritten notes, 1974.Google Scholar
[3]Sacks, G. E., The recursively enumerable degrees are dense, Annals of Mathematics, ser. 2, vol. 80 (1964), pp. 300312.CrossRefGoogle Scholar
[1]Rosenthal, D., The order indiscernibles of divisible ordered abelian groups, this Journal, vol. 49 (1984), pp. 151160.Google Scholar
[1]Anderson, A. R. and Belnap, N. D. Jr., Entailment: the logic of relevance and necessity, Vol. 1, Princeton University Press, Princeton, New Jersey, 1975.Google Scholar
[2]Edelstein, R., An interpolation lemma for the pure implicational calculus, this Journal, vol. 40 (1975), pp. 443444.Google Scholar
[3]Kreisel, G., Monadic operators defined by means of propositional quantification in intuitionistic logic, Reports on Mathematical Logic, vol. 12 (1981), pp. 915.Google Scholar
[4]Kreisel, G. and Krivine, J.-L., Elements of mathematical logic (model theory), North-Holland, Amsterdam, 1967.Google Scholar
[5]Kripke, S. A., The problem of entailment, this Journal, vol. 24 (1959), p. 324.Google Scholar
[6]McRobbie, M. A., Meyer, R. K., and Thistlewaite, P. B., Towards efficient “knowledge-based” automated theorem proving for non-standard logics, Proceedings of the 9th international conference on automated deduction (Lusk, E. W. and Overbeek, R., editors), Lecture Notes in Computer Science, Springer-Verlag, Berlin (to appear).Google Scholar
[7]Maehara, S. C., Craig no interpolation theorem, Sugaku, vol. 12 (1960/1961), pp. 235237. (Japanese)Google Scholar
[8]Meyer, R. K., R1—the bounds of finitude, Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, vol. 16 (1970), pp. 385387.CrossRefGoogle Scholar
[9]de Lavalette, G. R. Renardel, The interpolation theorem in fragments of logics, Proceedings of the Kononklijke Nederlandse Akademie van Wetenschappen, Series A, vol. 84 (1981), pp. 7186.Google Scholar
[10]Thistlewaite, P. B., McRobbie, M. A., and Meyer, R. K., Automated theorem-proving in non-classical logics, Research Notes in Theoretical Computer Science, Pitman, London, and Wiley, New York, 1988.Google Scholar
[11]Villars, R., “Eine semantische Charakterisierung der durch die Implikation allein darstellbaren Wahrheitsfunktionen, Archiv für Mathematische Logik und Grundlagenforschung, vol. 10 (1967), pp. 3436.CrossRefGoogle Scholar
[12]Zucker, J. I., Interpolation for fragments of the propositional calculus, Preprint ZW 116/78, Mathematische Centrum, Amsterdam, 1978.Google Scholar
[1]Anderson, A. R. and Belnap, N. D. Jr., Entailment: the logic of relevance and necessity, Vol. 1, Princeton University Press, Princeton, New Jersey, 1975.Google Scholar
[2]Belnap, N. D. Jr., and Wallace, J. R., A decision procedure for the system of entailment with negation, Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, vol. 11 (1965), pp. 277289.CrossRefGoogle Scholar
[3]Kripke, S. A., The problem of entailment (abstract), this Journal, vol. 24 (1959), p. 324. (Full details of this paper are to be found in [1].)Google Scholar
[4]McRobbie, M. A. and Belnap, N. D. Jr., Relevant analytic tableaux, Studia Logica, vol. 38 (1979), pp. 187200.CrossRefGoogle Scholar
[5]Meyer, R. K., Improved decision procedures for pure relevant logics, typescript, 1973.Google Scholar
[1]Marraud, H., General relational semantics for Łukasiewicz's logics, Contributed Paper, Logic Colloquium '87, Granada; abstract published in this Journal, vol. 54 (1989), p. 663.Google Scholar
[1]Girard, J.-Y., Linear logic, Theoretical Computer Science, vol. 50 (1987), pp. 1101.CrossRefGoogle Scholar
[2]Ketonen, J. and Weyhrauch, R., A decidable fragment of predicate calculus, Theoretical Computer Science, vol. 32 (1984), pp. 297307.CrossRefGoogle Scholar
[3]Ono, H. and Komori, Y., Logics without the contraction rule, this Journal, vol. 50 (1985), pp. 169201.Google Scholar
[4]Komori, Y., Predicate logics without the structure rules, Studia Logica, vol. 45 (1986), pp. 393404.CrossRefGoogle Scholar
[1]Kirk, R. E., A result on propositional logics having the disjunction property, Notre Dame Journal of Formal Logic, vol. 23 (1982), pp. 7174.CrossRefGoogle Scholar
[2]Maksimova, L. L., On maximal intermediate logics with the disjunction property, Studia Logica, vol. 45 (1986), pp. 6975.CrossRefGoogle Scholar
[3]Miglioli, P., Moscato, U., Ornaghi, M., Quazza, S., and Usberti, G., Some results on intermediate constructive logics, Notre Dame Journal of Formal Logic (to appear).Google Scholar
Montague, R., Universal grammar, Theoria vol. 36 (1970), pp. 373398.CrossRefGoogle Scholar
Ruzsa, I., Intensional logic and semantic value gaps, Logique et Analyse, vol. 29 (1986), pp. 187203.Google Scholar
[1]Goldreich, O., Micali, S. and Wigderson, A., Proofs that yield nothing, Proceedings of the 27th Annual Symposium on Foundations of Computer Science (1986), 174187.Google Scholar
[2]Mullin, A. A., A note on the mathematics of public-key cryptosystems, Computers & Security, vol. 3 (1984), pp. 4547.CrossRefGoogle Scholar
[1]Nourani, C. F., Equational intensity, initial models, and nonmonotonic logic: a conceptual overview, Proceedings of the sixth European conference in artificial intelligence (Pisa, 1984), North-Holland, Amsterdam.Google Scholar
[2]Nourani, C. F., Forcing, nonmonotonic logic, and initial models, paper presented at Logic Colloquium '84 (submitted for publication); abstract, this Journal, vol. 51 (1986), p. 494.Google Scholar
[3]Spohn, W., Ordinal conditional functions: a dynamic theory of epistemic states, Unpublished manuscript, Department of Philosophy, University of Munich, Munich.Google Scholar
[4]Hintikka, J., Knowledge and belief, Cornell University Press, Ithaca, New York, 1961.Google Scholar
[5]Kripke, S. A., Semantical analysis of modal logics, Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, vol. 9 (1963), pp. 6769.CrossRefGoogle Scholar
[6]Genesereth, M. and Nilsson, N., The logical foundations of artificial intelligence, Morgan Kaufman, Los Altos, California, 1987.Google Scholar
Beeson, M. J. [1985], Foundations of constructive mathematics, Springer-Verlag, Berlin.CrossRefGoogle Scholar
ObtuŁowicz, A. [1986], The logic of categories of partial functions and its applications, Dissertationes Mathematicae (Rozprawy Matematyczne), vol. 241.Google Scholar
Troelstra, A. [1987], On the syntax of Martin-Löf theories, Theoretical Computer Science, vol. 51, pp. 126.CrossRefGoogle Scholar
[1]Suszko, R., Non-Fregean logic and theories, Analele Universitatii Bucaresti, Acta Logica, vol. 11 (1968), pp. 105125.Google Scholar
[1]van Benthem, J., Possible worlds semantics: a research program that connot fail? Stadia Logica, vol. 43 (1984), pp. 379394.CrossRefGoogle Scholar
[2]Pearce, D. and Wansing, H., On the methodology of possible worlds semantics, II: Nonnormal worlds and propositional attitudes, Acta Philosophica Fennica (forthcoming).Google Scholar
[3]Rantala, V., Impossible worlds semantics and logical omniscience, Acta Philosophica Fennica, vol. 35 (1982), pp. 106115.Google Scholar
[4]Rantala, V., Quantified modal logic: nonnormal worlds and propositional attitudes, Studia Logica, vol. 41 (1982), pp. 4166.CrossRefGoogle Scholar
Peterson, P. L. [1983], The two “cultures”, Talk presented at the seventeenth world congress of philosophy, in Montréal.Google Scholar
Peterson, P. L. [1985], Real logic, Talk presented at Logic Colloquium '85, in Orsay; abstract published in this Journal, vol. 52 (1987), p. 337.Google Scholar
[1986], Real logic in philosophy, The Monist, vol. 69, pp. 235263.CrossRefGoogle Scholar
Peterson, P. L. [1987], Real logic explanation, Talk presented at the eighth international congress of logic, methodology and philosophy of science, in Moscow.Google Scholar
Peterson, P. L. [1988], Realism and reasoning, Talk presented at the Central Division meeting of the American Philosophical Association, in Cincinnati.Google Scholar
Peterson, P. L. [forthcoming], Logic knowledge, The Monist.Google Scholar
[1]Sochor, A., Metamathematics of the alternative set theory, I, Commentationes Mathematicae Universitatis Caroiinae, vol. 20 (1979), pp. 697721.Google Scholar
[2]Vopěnka, P., Mathematics in the alternative set theory, Teubner, Leipzig, 1979.Google Scholar
[3]Zadeh, L. A., Fuzzy sets, Information and Control, vol. 8 (1965), pp. 338353.CrossRefGoogle Scholar
[1]Keisler, H. J., Probability quantifiers, Chapter 14 in Model-theoretic languages (Barwise, J. and Feferman, S., editors), Springer-Verlag, Berlin, 1985.Google Scholar
[2]Hoover, D. N., An analytic completeness theorem for logics with probability quantifiers, this Journal, vol. 52 (1987), pp. 802816.Google Scholar
[3]Rašković, M. D., Completeness theorem for biprobability models, this Journal, vol. 51 (1986), pp. 586590.Google Scholar
[1]Smith, J., An interpretation of Martin-Löf's type theory in a type-free theory of propositions, this Journal, vol. 49 (1984), pp. 730753.Google Scholar
[1]Bainbridge, E. S., Freyd, P. J., Scedrov, A., and Scott, P. J., Functorial polymorphism (preliminary report, 1987).Google Scholar
[2]Carboni, A., Freyd, P. J., and Scedrov, A., A categorical approach to realizability and polymorphic types, Mathematical foundations of programming language semantics (New Orleans, 1987), Lecture Notes in Computer Science, vol. 298, Springer-Verlag, Berlin, 1988, pp. 2342.CrossRefGoogle Scholar
[3]Girard, J.-Y., Interprétation fonctionnelle et élimination des coupures de l'arithmétique d'ordre supérieur, Thèse de Doctorat d'État, Paris, 1972.Google Scholar
[4]Hyland, J. M. E., A small complete category, Annals of Pure and Applied Logic, vol. 40 (1988), pp. 135165.CrossRefGoogle Scholar
[5]Hyland, J. M. E., Robinson, E. P., and Rosolini, G., The discrete objects in the effective topos (to appear).Google Scholar
[6]Scott, D. S., Church's thesis and the unification of types, Lecture at the conference on Church's thesis: fifty years later, Utrecht, 1986.Google Scholar
[7]Troelstra, A. S.et al., Metamathematical investigations of intuitionistic arithmetic and analysis, Lecture Notes in Mathematics, vol. 344, Springer-Verlag, Berlin, 1973.CrossRefGoogle Scholar
[1]Shoesmith, D. J. and Smiley, T. J., Multiple-conclusion logic, Cambridge University Press, Cambridge, 1978.CrossRefGoogle Scholar
[2]Šikić, Z., Continuing variations on a system of Gentzen, Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, vol. 31 (1985), pp. 537544.CrossRefGoogle Scholar
[1]Čuda, K. and Vopěnka, P., Real and imaginary classes in the alternative set theory, Commentationes Mathematicae Universitatis Carolinae, vol. 20 (1979), pp. 639653.Google Scholar
[2]Vopěnka, P., Mathematics in the alternative set theory, Teubner, Leipzig, 1979.Google Scholar
[1]Girard, J.-Y., Linear logic, Theoretical Computer Science, vol. 50 (1987), pp. 1101.CrossRefGoogle Scholar
[1]Soskov, I. N., Definability via enumerations, this Journal, vol. 54 (1989), pp. 428440.Google Scholar
[1]Stachniak, Z., Two theorems on many-valued logics, Journal of Philosopical Logic, vol. 17 (1988), pp. 171179.Google Scholar
[2]Wójcicki, R., Matrix approach in methodology of sentential calculi, Studia Logica, vol. 32 (1973), pp. 737.CrossRefGoogle Scholar
[1]Shoesmith, D. and Smiley, T., Multiple-conclusion logic, Cambridge University Press, Cambridge, 1978.CrossRefGoogle Scholar
[2]Stachniak, Z. and O'Hearn, P., Resolution rule in the domain of strongly finite logics, Technical Report No. CS-87-14, York University, North York, Ontario, 1987 (to appear in Fundamenta lnformaticae).Google Scholar
[3]Wójcicki, R., Matrix approach in methodology of sentential calculi, Studia Logica, vol. 32 (1973), pp. 737.CrossRefGoogle Scholar
[1]Anderson, A. R. and Belnap, N. D. Jr., Entailment—the logic of relevence and necessity, Vol. 1, Princeton University Press, Princeton, New Jersey, 1975.Google Scholar
[2]Birkhoff, G., Lattice theory, 3rd ed., American Mathematical Society, Providence, Rhode Island, 1967.Google Scholar
[1]Skordev, D. G., Combinatory spaces and recursion in them, Izdatel'stvo Bolgarskoĭ Akademii Nauk, Sofia, 1980. (Russian; English translation in preparation)Google Scholar
[2]Ivanov, L. L., Algebraic recursion theory, Wiley, New York, 1986.Google Scholar
[3]Zashev, J. A., Basic recursion theory in partially ordered models of some fragments of the combinatory logic, Comptes Rendus de l'Académie Bulgare des Sciences, vol. 37 (1984), pp. 561564.Google Scholar