Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-22T05:47:34.482Z Has data issue: false hasContentIssue false

Cohomology of groups in o-minimal structures: acyclicity of the infinitesimal subgroup

Published online by Cambridge University Press:  12 March 2014

Alessandro Berarducci*
Affiliation:
Universitá di Pisa, Dipartimento di Matematica, Largo Bruno Pontecorvo 5, 56127 Pisa, Italy, E-mail: [email protected]

Abstract

By recent work on some conjectures of Pillay, each definably compact group in a saturated o-minimal structure is an extension of a compact Lie group by a torsion free normal divisible subgroup, called its infinitesimal subgroup. We show that the infinitesimal subgroup is cohomologically acyclic. This implies that the functorial correspondence between definably compact groups and Lie groups preserves the cohomology.

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Berarducci, A., O-minimal spectra, infinitesimal subgroups and cohomology, this Journal, vol. 72, (2007), no. 4, pp. 11771193.Google Scholar
[2]Berarducci, A. and Fornasiero, A., O-mininal cohomology: finiteness and invariance results, eprint arXiv:math. LO/0705.3425, 26 May 2007, 28 pp.Google Scholar
[3]Berarducci, A. and Otero, M., An additive measure in o-minimal expansions of fields, Quarterly Journal of Mathematics, vol. 55 (2004), pp. 411419.CrossRefGoogle Scholar
[4]Berarducci, A., Otero, M., Peterzil, Y., and Pillay, A., A descending chain condition for groups definable in o-minimal structures, Annals of Pure and Applied Logic, vol. 134 (2005), pp. 303313.CrossRefGoogle Scholar
[5]Bredon, G. E., Sheaf theory, second ed., Graduate Texts in Mathematics, no. 170, Springer-Verlag, New York, 1997.CrossRefGoogle Scholar
[6]Carral, M. and Coste, M., Normal spectral spaces and their dimension, Journal of Pure and Applied Algebra, vol. 30 (1983), pp. 227235.CrossRefGoogle Scholar
[7]Delfs, H., The homotopy axiom in semialgebraic cohomology, Journal für die reine und angewandte Mathematik, vol. 355 (1985), pp. 108128.Google Scholar
[8]Dolich, A., Forking and independence in o-minimal theories, this Journal, vol. 69 (2004), no. 1, pp. 215240.Google Scholar
[9]Edmundo, M., Jones, G. O., and Peatfield, N. J., Sheaf cohomology in o-minimal structures, Journal of Mathematical Logic, vol. 6 (2006), no. 2, pp. 163179.CrossRefGoogle Scholar
[10]Edmundo, M., Hurewicz theorems for definable groups, Lie groups and their cohomologies, preprint, 10 13 2007, (http://www.ciul.ul.pt/~edmundo/), 22 pp.Google Scholar
[11]Edmundo, M. and Otero, M., Definably compact abelian groups, Journal of Mathematical Logic, vol. 4 (2004), no. 2, pp. 163180.CrossRefGoogle Scholar
[12]Hrushovski, E., Peterzil, Y., and Pillay, A., Groups, measures and the NIP, Journal of the American Mathematical Society, vol. 21 (2008), no. 2, pp. 563596.CrossRefGoogle Scholar
[13]Hrushovski, E. and Pillay, A., On NIP and invariant measures, eprint arXiv:math.LO/0710.2330, 11 10 2007, 61 pp.Google Scholar
[14]Jones, G. O., Local to global methods in o-minimal expansions of fields, Ph.D. thesis, Oxford, 2006.Google Scholar
[15]Otero, M. and Peterzil, Y., G-linear sets and torsion points in definably compact groups, eprint arXiv:math.L0/0708.0532vl, 3 08 2007, 17 pp.Google Scholar
[16]Peterzil, Y. and Pillay, A., Generic sets in definably compact groups, Fundamenta Mathematicae, vol. 193 (2007), pp. 153170.CrossRefGoogle Scholar
[17]Peterzil, Y., Pillay, A., and Starchenko, S., Definably simple groups in o-minimal structures, Transactions of the American Mathematical Society, vol. 352 (2000), pp. 43974419.CrossRefGoogle Scholar
[18]Pillay, A., On groups and rings definable in o-minimal structures, Journal of Pure and Applied Algebra, vol. 53 (1988), pp. 239255.CrossRefGoogle Scholar
[19]Pillay, A., Sheaves of continuous definable functions, this Journal, vol. 53 (1988), no. 4, pp. 11651169.Google Scholar
[20]Pillay, A., Type-definability, compact Lie groups and o-minimality, Journal of Mathematical Logic, vol. 4 (2004), pp. 147162.CrossRefGoogle Scholar
[21]Shelah, S., Minimal bounded index subgroup for dependent theories, Proceedings of the American Mathematical Society, vol. 136 (2008), pp. 10871091.CrossRefGoogle Scholar