Article contents
Classifying Borel automorphisms
Published online by Cambridge University Press: 12 March 2014
Extract
§1. Introduction. This paper considers several complexity questions regarding Borel automorphisms of a Polish space. Recall that a Borel automorphism is a bijection of the space with itself whose graph is a Borel set (equivalently, the inverse image of any Borel set is Borel). Since the inverse of a Borel automorphism is another Borel automorphism, as is the composition of two Borel automorphisms, the set of Borel automorphisms of a given Polish space forms a group under the operation of composition. We can also consider the class of automorphisms of all Polish spaces. We will be primarily concerned here with the following notion of equivalence:
Definition 1.1. Two Borel automorphisms f and g of the Polish spaces X and Y are said to be Borel isomorphic, f ≅ g, if they are conjugate, i.e. there is a Borel bijection φ: X → Y such that φ ∘ f = g ∘ φ.
We restrict ourselves to automorphisms of uncountable Polish spaces, as the Borel automorphisms of a countable space are simply the permutations of the space. Since any two uncountable Polish spaces are Borel isomorphic, any Borel automorphism is Borel isomorphic to some automorphism of a fixed space. Hence, up to Borel isomorphism we can fix a Polish space and represent any Borel automorphism as an automorphism of this space. We will use the Cantor space 2ω (with the product topology) as our representative space.
- Type
- Research Article
- Information
- Copyright
- Copyright © Association for Symbolic Logic 2007
References
REFERENCES
- 2
- Cited by