Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-22T20:06:31.334Z Has data issue: false hasContentIssue false

Canonical Partition Relations

Published online by Cambridge University Press:  12 March 2014

James E. Baumgartner*
Affiliation:
Dartmouth College, Hanover, New Hampshire 03755

Abstract

Several canonical partition theorems are obtained, including a simultaneous generalization of Neumer's lemma and the Erdös-Rado theorem. The canonical partition relation for infinite cardinals is completely determined, answering a question of Erdös and Rado. Counterexamples are given showing that in several ways these results cannot be improved.

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 1975

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Baumgartner, J., Ineffability properties of cardinals. I, Proceedings of the International Colloquium on Infinite and Finite Sets (Keszthely, Hungary, 1973), pp. 109130.Google Scholar
[2] Baumgartner, J. and Hajnal, A., A proof {involving Martin's axiom) of a partition relation, Fundamenta Mathematicae, vol. 78 (1973), pp. 193203.CrossRefGoogle Scholar
[3] Erdös, P., Hajnal, A. and Rado, R., Partition relations for cardinal numbers, Acta Mathematica (Hung.), vol. 16 (1965), pp. 93196.Google Scholar
[4] Erdos, P. and Rado, R., A combinatorial theorem, Journal of the London Mathematical Society, vol. 25 (1950), pp. 249255.Google Scholar
[5] Erdos, P. and Rado, R., Combinatorial theorems on classifications of subsets of a given set, Proceedings of the London Mathematical Society (3), vol. 2 (1952), pp. 417439.CrossRefGoogle Scholar
[6] Erdos, P. and Rado, R., A partition calculus in set theory, Bulletin of the American Mathematical Society, vol. 62 (1956), pp. 427489.CrossRefGoogle Scholar
[7] Fodor, G., Eine Bemerkung zur Theorie der regressiven Funktionen, Acta Scientarium Mathematicum, vol. 17 (1956), pp. 139142.Google Scholar
[8] Hajnal, A., Remarks on a theorem of W. P. Hanf, Fundamenta Mathematicae, vol. 54 (1964), pp. 109113.Google Scholar
[9] Jensen, R. and Kunen, K., Some combinatorial properties of L and V (mimeographed).Google Scholar
[10] Neumer, W., Verallgemeinerung eines Satzes von Alexandroff und Urysohn, Mathematische Zeltschrift, vol. 54 (1951), pp. 254261.Google Scholar
[11] Ramsey, F. P., On a problem of formal logic, Proceedings of the London Mathematical Society (2), vol. 30 (1930), pp. 264286.Google Scholar
[12] Silver, J., Some applications of model theory in set theory, Annals of Mathematical Logic, vol. 3 (1971), pp. 45110.CrossRefGoogle Scholar
[13] Simpson, S., Model-theoretic proof of a partition theorem, Notices of the American Mathematical Society, vol. 17 (1970), p. 964.Google Scholar