Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-17T16:10:11.170Z Has data issue: false hasContentIssue false

Standard sets in nonstandard set theory

Published online by Cambridge University Press:  12 March 2014

Petr Andreev
Affiliation:
1106-563 Zelenograd, Moscow 124460, Russia, E-mail: [email protected]
Karel Hrbacek
Affiliation:
Department of Mathematics, City College of Cuny, New York, NY 10031, USA, E-mail: [email protected]

Abstract

We prove that Standardization fails in every nontrivial universe definable in the nonstandard set theory BST, and that a natural characterization of the standard universe is both consistent with and independent of BST. As a consequence we obtain a formulation of nonstandard class theory in the ∈-language.

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Andreev, P. V., On definable standardness predicates in internal set theory, Matematicheskie Zametki, vol. 66 (1999), pp. 803809, Russian.Google Scholar
[2]Andreev, P. V., On standardization principle in bounded set theory, Vestnik Moskovskogo Universiteta, Ser. 1, Mat., Mech., (1997), pp. 6870, Russian.Google Scholar
[3]Andreev, P. V. and Gordon, E. I., An axiomatics for nonstandard set theory, based on von Neumann-Bernays-Gödel theory, this Journal, vol. 66 (2001), pp. 13211341.Google Scholar
[4]Ballard, D., Foundational aspects of “non” standard mathematics, Contemporary Mathematics, vol. 176 (1994), American Mathematical Society, Providence, R.I.Google Scholar
[5]Benninghofen, B. and Richter, M., A general theory of superinfinitesimals, Fundamenta Mathematicae, vol. 123 (1987), no. 3, pp. 199215.CrossRefGoogle Scholar
[6]Chang, C. C. and Keisler, H. J., Model theory, 3rd ed., North-Holland Publ. Co., 1990.Google Scholar
[7]Nasso, M. Di, An axiomatic presentation of the nonstandard methods in mathematics, this Journal, vol. 67 (2002), pp. 315325.Google Scholar
[8]Gaifman, H., Elementary embeddings of models of set-theory and certain subtheories, Axiomatic set theory (Providence, RI) (Jech, T.J., editor), Proceedings of Symposia in Pure Mathematics, vol. XIII, Part II, AMS, 1974, pp. 33101.Google Scholar
[9]Gordon, E. I., Relatively standard elements in E. Nelson's internal set theory, Sibirski Matematicheski Zhurnal, vol. 30 (1989), pp. 8995, Russian.Google Scholar
[10]Gordon, E. I., Nonstandard methods in commutative harmonic analysis, AMS, Providence, Rhode Island, 1997.CrossRefGoogle Scholar
[11]Hrbacek, K., Axiomatic foundations for nonstandard analysis, Fundamenta Mathematicae, vol. 98 (1978), pp. 119, abstract in this Journal, vol. 41 (1976), p. 285.Google Scholar
[12]Hrbacek, K., Realism, nonstandard set theory, and large cardinals, Annals of Pure and Applied Logic, vol. 109 (2001), pp. 1548.CrossRefGoogle Scholar
[13]Hrbacek, K., Internally iterated ultrapowers, Proceedings of the Special Session on Nonstandard Methods, AMS Annual Meeting in Baltimore 2003 (Enayat, A. and Kossak, R., editors). Contemporary Math., American Mathematical Society, Providence, RI, 2004.Google Scholar
[14]Hrbacek, K., Fully relativized nonstandard set theory, in preparation.Google Scholar
[15]Jech, T., Set theory, Academic Press, New York, 1978.Google Scholar
[16]Kanovei, V., Undecidable hypotheses in Edward Nelson's internal set theory, Russian Mathematical Surveys, vol. 46 (1991), pp. 154.Google Scholar
[17]Kanovei, V. and Reeken, M., Internal approach to external sets and universes, Stadia Logica, Part I, 55 (1995), pp. 227235; Part II, 55 (1995), pp. 347–376; Part III, 56 (1996), pp. 93–322.Google Scholar
[18]Kanovei, V. and Reeken, M., Mathematics in a nonstandard world, Mathematica Japonica, vol. 45 (1997). Part I. pp. 369–408, Part II, pp. 555571.Google Scholar
[19]Kanovei, V. and Reeken, M., A nonstandard set theory in the ∈-language, Archive for Mathematical Logic, vol. 39 (2000), pp. 403416.Google Scholar
[20]Kanovei, V. and Reeken, M., Nonstandard analysis: Axiomatically, a book in preparation.Google Scholar
[21]McAloon, K., Consistency results about ordinal definability, Annals of Mathematical Logic, vol. 2 (1971). pp. 449467.Google Scholar
[22]Molchanov, V. A., On applications of double nonstandard enlargements to topology, Sibirski Matematicheski Zhurnal, vol. 30 (1989), pp. 6471.Google Scholar
[23]Murakami, M., Standardization principle of nonstandard universes, this Journal, vol. 64 (1999), pp. 16451655.Google Scholar
[24]Nelson, E., Internal set theory: a new approach to nonstandard analysis, Bulletin of American Mathematical Society, vol. 83 (1977), pp. 11651198.CrossRefGoogle Scholar
[25]Péraire, Y., Théorie relative des ensembles intérnes, Osaka Journal of Mathematcs, vol. 29 (1992), pp. 267297.Google Scholar
[26]Péraire, Y. and Wallet, G., Une théorie relative des ensembles intérnes, Comptes Rendus de l'Académie des Sciences. Série I. Mathématique, vol. 308 (1989), pp. 301304.Google Scholar
[27]Robinson, A. and Zakon, E., A set-theoretical characterization of enlargements, Applications of model theory to algebra, analysis and probability (Luxemburg, W. A. J., editor). Holt, Rinehart and Winston, 1969, pp. 109122.Google Scholar
[28]Suzuki, A., No elementary embedding from V into V is definable from parameters, this Journal, vol. 64 (1999), pp. 15911594.Google Scholar