Published online by Cambridge University Press: 12 March 2014
Resolution is the most widely studied approach to propositional theorem proving. In developing efficient resolution-based algorithms, dozens of variants and refinements of resolution have been studied from both the empirical and analytic sides. The most prominent of these refinements are: DP (ordered), DLL (tree), semantic, negative, linear and regular resolution. In this paper, we characterize and study these six refinements of resolution. We give a nearly complete characterization of the relative complexities of all six refinements. While many of the important separations and simulations were already known, many new ones are presented in this paper; in particular, we give the first separation of semantic resolution from general resolution. As a special case, we obtain the first exponential separation of negative resolution from general resolution. We also attempt to present a unifying framework for studying all of these refinements.