The propagation of small-amplitude hydromagnetic waves in a cold plasma mixed with hot ions is investigated using the first-order CGL equations for ions. It is assumed that in an equilibrium state the ions consist of two components, cold ions and hot ions with bi-Maxwellians. Propagation properties of hydro-magnetic waves are analysed by use of phase speed and refractive index surfaces, polarization and the amplitude ratio between perturbed density and magnetic field. It is shown that the existence of cold ions affects the properties of hydro-magnetic waves through finite frequency corrections only when the temperature anisotropy exists; and that the critical angle, at which the polarization sense changes from right-handed to left-handed as well as from left-handed to right-handed, can exist for intermediate and slow waves.