Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-26T01:46:27.807Z Has data issue: false hasContentIssue false

Plasmoid motion across a tangential discontinuity (with application to the magnetopause)

Published online by Cambridge University Press:  13 March 2009

J. Lemaire
Affiliation:
Institut d'Aéronomie Spatiale de Belgique, 3 avenue Circulaire, B-1180 Brussels, Belgium

Abstract

The motion of a plasmoid (plasma-field entity) across an inhomogeneous magnetic field distribution of which the direction and strength change along the penetration trajectory has been studied. The bulk velocity decreases when the plasma element penetrates into a region of increasing magnetic field. The critical magnetic field intensity where a plasmoid is stopped or deflected is found to be the same critical field as that which has been observed in laboratory experiments for a non-rotating B-field distribution. The polarization electric field induced inside a moving plasma element has been determined for both low-β and high-β plasmoids. The momentum density vector of a plasmoid is deflected in the – B × ∇B and – B × (B. ∇)B directions as it penetrates into an inhomogeneous B-field distribution. This kinetic model has been applied to the impulsive penetration of solar wind plasma irregularities impinging on the earth's geomagnetic field with an excess momentum density. As a consequence of impulsive penetration, a plasma boundary layer is formed where the intruding plasmoids are deflected eastward. Magnetospheric plasma is dragged in the direction parallel to the flanks of the average magnetopause surface. Diamagnetic effects of these impulsively penetrating plasmoids into the magnetosphere are also briefly discussed.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Axford, W. I. & Hines, C. O. 1961 Can. J. Phys. 39, 1433.CrossRefGoogle Scholar
Baker, D. A. & Hammel, J. E. 1965 Phys. Fluids, 8, 713.CrossRefGoogle Scholar
Bostick, W. H. 1956 Phya. Rev. 104, 292.CrossRefGoogle Scholar
Carlson, C. W. & Torbert, R. B. 1980 J. Geophys. Res. 85, 2903.CrossRefGoogle Scholar
Demidenko, I. I., Lomino, N. S., Padalka, V. G., Rutkevich, B. N. & Sinel'nikov, K. D. 1967 Soviet Phys. Tech. Phys. 11, 1354.Google Scholar
Demidenko, I. I., Lomino, N. S., Padalka, V. G., Rutkevich, B. N. & Sinel'nikov, K. D. 1969 Soviet Phys. Tech. Phys. 14, 16.Google Scholar
Demidenko, I. I., Lomino, N. S., Padalka, V. G., Safronov, B. G. & Sinel'nikov, K. D. 1966 Plasma Phys. 8, 433.Google Scholar
Dolique, J. M. 1963 Comptes-Rendus Acad. Sci. Paris, 256, 3984.Google Scholar
Fairfield, D. H. 1971 J. Geophys. Res. 76, 6700.CrossRefGoogle Scholar
Feldman, W. C., Asbridge, J. R., Bame, S. J. & Gosling, J. T. 1977 Solar Output and its Variations (ed. White, O. R.), p. 351. Colorado Associated University Press.Google Scholar
Formisano, V., Domingo, V. & Wenzel, K.-P. 1979 Planet. Space Sci. 27, 1137.CrossRefGoogle Scholar
Gol'ts, E. Ya. & Khodzhaev, A. Z. 1969 Soviet Phys. Tech. Phys. 14, 741.Google Scholar
Hedgecock, P. C. 1975 Solar Phys. 44, 205.CrossRefGoogle Scholar
Heikkila, W. J. 1982 Geophys. Res. Lett. 9, 159.CrossRefGoogle Scholar
Hines, C. O. 1964 Space Sci. Rev. 3, 342.CrossRefGoogle Scholar
Khizhnyak, N. A., Demidenko, I. I., Lomino, N. S. & Padalka, V. G. 1969 Soviet Phys. Tech. Phys. 13, 1022.Google Scholar
Lemaire, J. 1977 Planet. Space Sci. 25, 887.CrossRefGoogle Scholar
Lemaire, J. 1983 A simulation of the interconnection between magnetic field lines and geomagnetic field lines (available on video-cassette). IASB, Brussels.Google Scholar
Lemaire, J. 1985 The Polar Cusp (eds. Holtet, J. and Egeland, A.), 3346. Reidel.CrossRefGoogle Scholar
Lemaire, J. & Roth, M. 1978 J. Atmos. Terr. Phys. 40, 337.CrossRefGoogle Scholar
Lemaire, J. & Scherer, M. 1978 J. Atmos. Terr. Phys. 40, 337.CrossRefGoogle Scholar
Longmire, C. L. 1963 Elementary Plasma Physics. Interscience.Google Scholar
Ness, N. F., Hundhausen, A. J. & Bame, S. J. 1971 J. Geophys. Res. 76, 6643.CrossRefGoogle Scholar
Russell, C. T. & Elphic, R. C. 1979 Geophys. Res. Lett. 6, 33.CrossRefGoogle Scholar
Schmidt, G. 1960 Phys. Fluids, 3, 961.CrossRefGoogle Scholar
Titheridge, J. E. 1976 J. Geophys. Res. 81, 3221.CrossRefGoogle Scholar
Watson, K. M. 1956 Phys. Rev. 102, 12.CrossRefGoogle Scholar