Hostname: page-component-669899f699-vbsjw Total loading time: 0 Render date: 2025-04-25T12:54:07.545Z Has data issue: false hasContentIssue false

Test particle acceleration in resistive torsional spine magnetic reconnection using laboratory plasma parameters

Published online by Cambridge University Press:  03 December 2024

D.L. Chesny*
Affiliation:
SpaceWave, LLC, Satellite Beach, FL 32937, USA
K.W. Hatfield
Affiliation:
Department of Aerospace, Physics and Space Sciences, Florida Institute of Technology, Melbourne, FL 32901, USA
M.B. Moffett
Affiliation:
SpaceWave, LLC, Satellite Beach, FL 32937, USA
*
Email address for correspondence: [email protected]

Abstract

Magnetic reconnection is a basic particle acceleration mechanism in laboratory and astrophysical plasmas. Two-dimensional models have been critical to understanding the onset of reconnection in laboratory experiments, but are fundamentally limited in diagnosing ion acceleration along open magnetic field lines. These shortcomings have opened the way to three-dimensional (3-D) models of torsional reconnection, where localized rotational perturbations to a fan-spine magnetic null point topology have demonstrated bulk particle acceleration along open magnetic field lines. Previous computational studies of the torsional fan reconnection mode using both solar and laboratory parameters demonstrated collimated jet formation and acceleration along the spine axis, wherein the bulk particle final kinetic energy spectra were shown to fall within a relatively narrow range (${\sim }2$ keV). This paper introduces typical laboratory plasma parameters in the torsional spine mode of 3-D reconnection models to diagnose its efficacy in inducing rapid ion acceleration. Using laboratory-scale length helium plasma parameters typical of capacitive discharges (singly ionized helium), we solve for relativistic particle trajectories using solutions to the steady-state, resistive, kinematic magnetohydrodynamic equations in the fan-spine topology. We find that particle acceleration at the reconnection site is highly dependent on the injection radius, and the peak accelerated particles ($\approx$3 keV) are trapped about the magnetic null point. While a jet is formed by ions injected close to the peak fan plane perturbation radius, their final ion kinetic energies are an order of magnitude lower ($\approx$0.3 keV) than the mirrored particles. Analysing the time dependence of their limited representative energy spectra shows the torsional spine mode particles follow an evolution much different than the narrow spectra of the torsional fan mode. These results have implications for diagnostic expectations of future laboratory plasma experiments designed to induce the torsional spine reconnection mode.

Type
Research Article
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Böhm, C. & Perrin, J. 1993 Retarding-field analyzer for measurements of ion energy distributions and secondary electron emission coefficients in low-pressure radio frequency discharges. Rev. Sci. Instrum. 64 (1), 3144.CrossRefGoogle Scholar
Chesny, D.L., Moffett, M.B., Cole, J.M., Baptiste, U. & Orange, N.B. 2022 a Development and experimental verification of a strong field fan-spine magnetic null point topology. IEEE Trans. Plasma Sci. 50 (6), 19271933.CrossRefGoogle Scholar
Chesny, D.L., Moffett, M.B., Hatfield, K.W., Cole, J.M., Landers, K., Shokrollahi, Y. & Ege, F. 2022 b Operation and qualification of coaxial plasma gun modes with a gas puff inlet. IEEE Trans. Plasma Sci. 50 (7), 20782084.CrossRefGoogle Scholar
Chesny, D.L. & Orange, N.B. 2020 Conducting-coil assembly for producing three-dimensional magnetic null points. Phys. Rev. Appl. 13 (6), 064019.CrossRefGoogle Scholar
Chesny, D.L., Orange, N.B. & Dempsey, C. 2021 a Method for creating a three-dimensional magnetic null point topology with an accurate spine axis. Rev. Sci. Instrum. 92 (5), 054710.CrossRefGoogle ScholarPubMed
Chesny, D.L., Orange, N.B. & Hatfield, K.W. 2021 b Test particle acceleration in resistive torsional fan magnetic reconnection using laboratory plasma parameters. J. Plasma Phys. 87 (6), 905870615.CrossRefGoogle Scholar
Chesny, D.L., Orange, N.B., Oluseyi, H.M. & Valletta, D.R. 2017 Toward laboratory torsional spine magnetic reconnection. J. Plasma Phys. 83, 905830602.CrossRefGoogle Scholar
Dalla, S. & Browning, P.K. 2005 Particle acceleration at a three-dimensional reconnection site in the solar corona. Astron. Astrophys. 436, 11031111.CrossRefGoogle Scholar
Dalla, S. & Browning, P.K. 2006 Jets of energetic particles generated by magnetic reconnection at a three-dimensional magnetic null. Astrophys. J. 640, L99L102.CrossRefGoogle Scholar
Dalla, S. & Browning, P.K. 2008 Particle trajectories and acceleration during 3D fan reconnection. Astron. Astrophys. 491, 289295.CrossRefGoogle Scholar
Edwards, S.J. & Parnell, C.E. 2015 Null point distribution in global coronal potential field extrapolations. Solar Phys. 290, 20552076.CrossRefGoogle Scholar
Gascoyne, A. 2015 Dynamics of charged particle motion in the vicinity of three dimensional magnetic null points: energization and chaos. Phys. Plasmas 22, 032907.CrossRefGoogle Scholar
Gonzalez, J.H., Clausse, A., Bruzzone, H. & Florido, P.C. 2004 A lumped parameter model of plasma focus. IEEE Trans. Plasma Sci. 32 (3), 13831391.CrossRefGoogle Scholar
Hart, P.J. 1964 Modified snowplow model for coaxial plasma accelerators. J. Appl. Phys. 35, 34253431.CrossRefGoogle Scholar
Homma, Y., Hoshino, K., Tokunaga, S., Yamoto, S., Hatayama, A., Asakura, N., Sakamoto, Y. & Tobita, K. 2018 An extended kinetic model for the thermal force on impurity particles in weakly collisional plasmas. Contrib. Plasma Phys. 58 (6–8), 629637.CrossRefGoogle Scholar
Hosseinpour, M. 2014 a Test particle acceleration in torsional fan reconnection. Mon. Not. R. Astron. Soc. 445, 24762483.CrossRefGoogle Scholar
Hosseinpour, M. 2014 b Test particle acceleration in torsional spine magnetic reconnection. Astrophys. Space Sci. 353, 379387.CrossRefGoogle Scholar
Hosseinpour, M. 2015 Accelerated jets of energetic protons generated by torsional fan reconnection. Astrophys. Space Sci. 358, 17.CrossRefGoogle Scholar
Hosseinpour, M., Mehdizade, M. & Mohammadi, M.A. 2014 Comparison of test particle acceleration in torsional spine and fan reconnection regimes. Phys. Plasmas 21 (10), 102904.CrossRefGoogle Scholar
Ji, H., Alt, A., Antiochos, S., Baalrud, S., Bale, S., Bellan, P.M., Begelman, M., Beresnyak, A., Blackman, E.G., Brennan, D., et al. 2019 Major scientific challenges and opportunities in understanding magnetic reconnection and related explosive phenomena throughout the universe. Bull. Am. Astron. Soc. 51 (3), 5.Google Scholar
Ji, H., Yamada, M., Hsu, S. & Kulsrud, R. 1998 Experimental test of the Sweet–Parker model of magnetic reconnection. Phys. Rev. Lett. 80, 32563259.CrossRefGoogle Scholar
Kwek, K.H., Tou, T.Y. & Lee, S. 1990 Current sheath structure of the plasma focus in the run-down phase. IEEE Trans. Plasma Sci. 18 (5), 826830.CrossRefGoogle Scholar
Larson, A.V., Liebing, L. & Dethlefsen, R. 1966 Pulsed coaxial plasma gun accelerators in space thrustor development. Technical Report NASA-CR-54710 GD/C-DBE-65-026, 19670001436.Google Scholar
Lee, S. & Serban, A. 1996 Dimensions and lifetime of the plasma focus pinch. IEEE Trans. Plasma Sci. 24, 11011105.Google Scholar
Lieberman, M.A. & Lichtenberg, A.J. 2005 Principles of Plasma Discharges and Materials Processing, 2nd edn. Wiley-Interscience.CrossRefGoogle Scholar
Longcope, D.W. & Parnell, C.E. 2009 The number of magnetic null points in the quiet sun corona. Solar Phys. 254, 5175.CrossRefGoogle Scholar
Marchand, R. 2010 Test-particle simulation of space plasmas. Commun. Comput. Phys. 8 (3), 471483.Google Scholar
Marshall, J. 1960 Performance of a hydromagnetic plasma gun. Phys. Fluids 3 (1), 134135.CrossRefGoogle Scholar
Mason, E.I., Antiochos, S.K. & Viall, N.M. 2019 Observations of solar coronal rain in null point topologies. Astrophys. J. Lett. 874 (2), L33.CrossRefGoogle Scholar
Mason, E.I., Antiochos, S.K. & Vourlidas, A. 2021 An observational study of a “rosetta stone” solar eruption. Astrophys. J. Lett. 914 (1), L8.CrossRefGoogle Scholar
Moffett, M.B., Chesny, D.L., Cole, J.M., Hatfield, K.W. & Rusovici, R. 2022 Bdot probe and Rogowski coil cross-calibration and sensor fusion in pulsed direct current capacitor discharges. Rev. Sci. Instrum. 93 (3), 034707.CrossRefGoogle ScholarPubMed
Pallister, R., Pontin, D.I. & Wyper, P.F. 2019 Proton acceleration at tearing coronal null-point current sheets. Astron. Astrophys. 622, A207.CrossRefGoogle Scholar
Park, S., Choe, W., Moon, S.Y. & Yoo, S.J. 2019 Electron characterization in weakly ionized collisional plasmas: from principles to techniques. Adv. Phys. X 4 (1), 1526114.Google Scholar
Parnell, C.E., Neukirch, T., Smith, J.M. & Priest, E.R. 1997 Structure and collapse of three-dimensional magnetic neutral points. Geophys. Astrophys. Fluid Dyn. 84, 245271.CrossRefGoogle Scholar
Parnell, C.E., Smith, J.M., Neukirch, T. & Priest, E.R. 1996 The structure of three-dimensional magnetic neutral points. Phys. Plasmas 3, 759770.CrossRefGoogle Scholar
Pontin, D.I. 2011 Three-dimensional magnetic reconnection regimes: a review. Adv. Space Res. 47, 15081522.CrossRefGoogle Scholar
Pontin, D.I. 2012 Theory of magnetic reconnection in solar and astrophysical plasmas. Phil. Trans. R. Soc. Lond. A 370, 31693192.Google ScholarPubMed
Pontin, D.I., Al-Hachami, A.K. & Galsgaard, K. 2011 Generalised models for torsional spine and fan magnetic reconnection. Astron. Astrophys. 533, A78.CrossRefGoogle Scholar
Pontin, D.I. & Galsgaard, K. 2007 Current amplification and magnetic reconnection at a three-dimensional null point: physical characteristics. J. Geophys. Res. (Space Phys.) 112, 3103.CrossRefGoogle Scholar
Pontin, D.I., Hornig, G. & Priest, E.R. 2004 Kinematic reconnection at a magnetic null point: spine-aligned current. Geophys. Astrophys. Fluid Dyn. 98 (5), 407428.CrossRefGoogle Scholar
Pontin, D.I., Hornig, G. & Priest, E.R. 2005 Kinematic reconnection at a magnetic null point: fan-aligned current. Geophys. Astrophys. Fluid Dyn. 99 (1), 7793.CrossRefGoogle Scholar
Pontin, D.I., Priest, E.R. & Galsgaard, K. 2013 On the nature of reconnection at a solar coronal null point above a separatrix dome. Astrophys. J. 774, 154.CrossRefGoogle Scholar
Priest, E.R. & Pontin, D.I. 2009 Three-dimensional null point reconnection regimes. Phys. Plasmas 16 (12), 122101.CrossRefGoogle Scholar
Schaer, S.F. 1994 Coaxial plasma gun in the high-density regime and injection into a helical field. Helvetica Phys. Acta 67 (2), 217218.Google Scholar
Schwerdtfeger, P. & Nagle, J.K. 2019 2018 table of static dipole polarizabilities of the neutral elements in the periodic table. Mol. Phys. 117 (9–12), 12001225.CrossRefGoogle Scholar
Stanier, A., Browning, P. & Dalla, S. 2012 Solar particle acceleration at reconnecting 3D null points. Astron. Astrophys. 542, A47.CrossRefGoogle Scholar
Stark, A., Fox, W., Egedal, J., Grulke, O. & Klinger, T. 2005 Laser-induced fluorescence measurement of the ion-energy-distribution function in a collisionless reconnection experiment. Phys. Rev. Lett. 95, 235005.CrossRefGoogle Scholar
Subramaniam, V. & Raja, L.L. 2017 Magnetohydrodynamic simulation study of plasma jets and plasma-surface contact in coaxial plasma accelerators. Phys. Plasmas 24 (6), 062507.CrossRefGoogle Scholar
Thurgood, J.O., Pontin, D.I. & McLaughlin, J.A. 2017 Three-dimensional oscillatory magnetic reconnection. Astrophys. J. 844, 2.CrossRefGoogle Scholar
Witherspoon, F.D., Case, A., Messer, S.J., Bomgardner, R., Phillips, M.W., Brockington, S. & Elton, R. 2009 A contoured gap coaxial plasma gun with injected plasma armature. Rev. Sci. Instrum. 80 (8), 083506.CrossRefGoogle ScholarPubMed
Wyper, P.F., Antiochos, S.K. & DeVore, C.R. 2017 A universal model for solar eruptions. Nature 544, 452455.CrossRefGoogle ScholarPubMed
Wyper, P. & Jain, R. 2010 Torsional magnetic reconnection at three dimensional null points: a phenomenological study. Phys. Plasmas 17, 092902.CrossRefGoogle Scholar
Wyper, P.F. & Jain, R. 2011 Torsional magnetic reconnection: the effects of localizing the non-ideal (ηJ) term. J. Plasma Phys. 77 (6), 843855.CrossRefGoogle Scholar
Yates, K.C., Langendorf, S.J., Hsu, S.C., Dunn, J.P., Brockington, S., Case, A., Cruz, E., Witherspoon, F.D., Thio, Y.C.F., Cassibry, J.T., et al. 2020 Experimental characterization of a section of a spherically imploding plasma liner formed by merging hypersonic plasma jets. Phys. Plasmas 27 (6), 062706.CrossRefGoogle Scholar
Zhong, J.Y., Lin, J., Li, Y.T., Wang, X., Li, Y., Zhang, K., Yuan, D.W., Ping, Y.L., Wei, H.G., Wang, J.Q., et al. 2016 Relativistic electrons produced by reconnecting electric fields in a laser-driven bench-top solar flare. Astrophys. J. Suppl. Ser. 225 (2), 30.CrossRefGoogle Scholar