Hostname: page-component-55f67697df-px5tt Total loading time: 0 Render date: 2025-05-13T10:55:03.086Z Has data issue: true hasContentIssue false

Self-consistent effects in the ponderomotive acceleration of electron beams

Published online by Cambridge University Press:  30 September 2024

I. Almansa
Affiliation:
Instituto de Física, Universidade Federal do Rio Grande do Sul, Caixa Postal 15051, 91501-970 Porto Alegre, RS, Brasil
F. Russman
Affiliation:
Instituto de Física, Universidade Federal do Rio Grande do Sul, Caixa Postal 15051, 91501-970 Porto Alegre, RS, Brasil
E. Peter
Affiliation:
Instituto de Física, Universidade Federal do Rio Grande do Sul, Caixa Postal 15051, 91501-970 Porto Alegre, RS, Brasil
S. Marini*
Affiliation:
CEA, IRFU, DACM, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
F.B. Rizzato
Affiliation:
Instituto de Física, Universidade Federal do Rio Grande do Sul, Caixa Postal 15051, 91501-970 Porto Alegre, RS, Brasil
*
Email address for correspondence: [email protected]

Abstract

In the present work, we extend the results of a previous investigation on the dynamics of electrons under the action of an inverse free-electron-laser scheme (Almansa et al., Phys. Plasmas, vol. 26, 2019, 033105). While the former work examined electrons as single test particles subject to the combined action of a modulated wiggler plus a laser field, we now look at electrons as composing a particle beam, where collective space-charge effects are relevant and included in the analysis. Our previous work showed that effective acceleration is achieved when the initial velocities of the particles are close enough to the phase velocity of the beat-wave mode formed by the laser and the wiggler fields. Electrons are then initially accelerated by a ponderomotive uphill effect generated by the beat mode and, once reaching the phase velocity of the beat, undergo a final strong resonant acceleration step resembling a catapult effect. The present work shows that, under proper conditions, space-charge effects play a similar role as the initial (or injected) velocity of the beam. Even if acceleration is absent when space charge is neglected, it may be present and effective when charge effects are taken into account. We also discuss how far the space charge can grow without affecting the sustainability of the acceleration process.

Type
Research Article
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Almansa, I., Burton, D.A., Cairns, R.A., Marini, S., Peter, E., Rizzato, F.B. & Russman, F. 2018 Uphill acceleration in a spatially modulated electrostatic field particle accelerator. Phys. Plasmas 25 (11), 113107.Google Scholar
Almansa, I., Russman, F.B., Marini, S., Peter, E., de Oliveira, G.I., Cairns, R.A. & Rizzato, F.B. 2019 Ponderomotive and resonant effects in the acceleration of particles by electromagnetic modes. Phys. Plasmas 26 (3), 033105.Google Scholar
Burton, D.A., Cairns, R., Ersfeld, B., Noble, A., Yoffe, S. & Jaroszynski, D. 2017 Observations on the ponderomotive force. In Relativistic Plasma Waves and Particle Beams as Coherent and Incoherent Radiation Sources II (ed. D. Jaroszynski). International Society for Optics and Photonics.Google Scholar
Courant, E.D., Pellegrini, C. & Zakowicz, W. 1985 High-energy inverse free-electron-laser accelerator. Phys. Rev. A 32, 28132823.Google Scholar
Davidson, R.C. & Qin, H. 2001 Physics of Intense Charged Particle Beams in High Energy Accelerators. Co-Published with World Scientific Publishing Co.Google Scholar
Duris, J., Musumeci, P., Babzien, M., Fedurin, M., Kusche, K., Li, R.K., Moody, J., Pogorelsky, I., Polyanskiy, M., Rosenzweig, J.B., et al. 2014 High-quality electron beams from a helical inverse free-electron laser accelerator. Nat. Commun. 5 (1), 4928.Google Scholar
Elmore, W., Elmore, W. & Heald, M. 1985 Physics of Waves. Dover Books on Physics Series. Dover Publications.Google Scholar
Evstatiev, E.G., Morrison, P.J. & Horton, W. 2005 A relativistic beam-plasma system with electromagnetic waves. Phys. Plasmas 12 (7), 072108.Google Scholar
Ho, L.V., Musumeci, P., Duris, J.P. & Li, R.K. 2013 Modeling space charge effects in optical bunchers. In Proceedings of the Particle Accelerator Conference 2013 (PAC2013) (ed. T. Satogata, C. Petit-Jean-Genaz, & V. Schaa), p. 511. Pasadena, CA, USA.Google Scholar
Landau, L. & Lifschitz, E. 1965 Théorie du champ. Mir.Google Scholar
Londrillo, P., Gatti, C. & Ferrario, M. 2014 Numerical investigation of beam-driven PWFA in quasi-nonlinear regime. Nucl. Instrum. Meth. Phys. Res. A 740, 236241, Proceedings of the first European Advanced Accelerator Concepts Workshop 2013.Google Scholar
Macchi, A. 2013 A Superintense Laser-Plasma Interaction Theory Primer. SpringerBriefs in Physics. Springer Netherlands.Google Scholar
Mendonça, J.T. 2001 Theory of Photon Acceleration. Series in Plasma Physics, vol. 218. IOP Publishing.Google Scholar
Mulser, P. & Bauer, D. 2010 High Power Laser-Matter Interaction. Springer.Google Scholar
Ruiz, D.E. & Dodin, I.Y. 2017 Ponderomotive dynamics of waves in quasiperiodically modulated media. Phys. Rev. A 95 (3), 032114.Google Scholar
Russman, F., Marini, S. & Rizzato, F. 2022 A canonical view on particle acceleration by electromagnetic pulses. J. Plasma Phys. 88 (2), 905880204.Google Scholar
Shukla, P.K., Rao, N., Yu, M. & Tsintsadze, N. 1986 Relativistic nonlinear effects in plasmas. Phys. Rep. 138 (1–2), 1149.Google Scholar
Singh, J., Rajput, J., Kant, N. & Kumar, S. 2022 Electron acceleration in an inverse free electron laser with a tapered wiggler field. J. Phys.: Conf. Ser. 2267 (1), 012068.Google Scholar
van Steenbergen, A., Gallardo, J., Sandweiss, J. & Fang, J.-M. 1996 Observation of energy gain at the BNL inverse free-electron-laser accelerator. Phys. Rev. Lett. 77, 26902693.Google Scholar
Vay, J.-L. 2008 Simulation of beams or plasmas crossing at relativistic velocity$^{\rm a)}$. Phys. Plasmas 15 (5), 056701.Google Scholar
Vranic, M., Martins, J.L., Vieira, J., Fonseca, R.A. & Silva, L.O. 2014 All-optical radiation reaction at $10^{21}\,{\rm W}\,{\rm cm}^{-2}$. Phys. Rev. Lett. 113, 134801.Google Scholar