Hostname: page-component-669899f699-7xsfk Total loading time: 0 Render date: 2025-04-25T15:51:09.476Z Has data issue: false hasContentIssue false

Radiative and continuum dampings of reversed shear Alfvén eigenmodes and perturbative analysis limitations for tokamaks

Published online by Cambridge University Press:  29 November 2024

N. N. Gorelenkov*
Affiliation:
Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, NJ 08543-0451, USA
L. Yu
Affiliation:
School of Physics, East China University of Science and Technology, Shanghai 200237, PR China
Y. Wang
Affiliation:
Institute for Fusion Theory and Simulation and School of Physics, Zhejiang University, Hangzhou 310027, PR China
G.-Y. Fu
Affiliation:
Institute for Fusion Theory and Simulation and School of Physics, Zhejiang University, Hangzhou 310027, PR China
*
Email address for correspondence: [email protected]

Abstract

A careful theoretical analysis of the excitation of Alfvén eigenmodes (AEs), such as TAE (toroidicity-induced AE) and RSAE (reversed shear AE), by superalfvenic energetic particles is required for reliable predictions of energetic ion relaxation in present day fusion experiments. This includes the evaluation of different AE damping mechanisms including radiative and continuum dampings which are the focus of this study. A recent comprehensive benchmark of different eigenmode solvers including gyrokinetic, gyrofluid and hybrid magenetohydrodynamics (MHD) has shown that employed models may have deficiencies when addressing some of them (Taimourzadeh et al., Nucl. Fusion, vol. 59, 2019, 066006). In this paper, we are studying the radiative and continuum dampings of RSAEs in details which were missing in hybrid NOVA/NOVA-C calculations to prepare a NOVA-C package with a substantial upgrade. Both dampings require the finite Larmor radius (FLR) corrections to AE mode structures to be accounted for. Accurately calculating different damping rates and understanding their parametric dependencies, we resolve the limitation coming out of the perturbative approach. In particular, here, the radiative damping is included perturbatively, whereas the continuum damping is computed non-perturbatively. Our comparison leads to the conclusion that the non-perturbative treatment of the unstable RSAE modes is needed to find the agreement with the gyrokinetic calculations. We expect that the RSAE mode structure modification plays a dominant role in determining the RSAE stability.

Type
Research Article
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Aslanyan, V., Taimourzadeh, S., Shi, L., Lin, Z., Dong, G., Puglia, P., Porkolab, M., Dumont, R., Sharapov, S.E., Mailloux, J., et al. 2019 Gyrokinetic simulations of toroidal Alfvén eigenmodes excited by energetic ions and external antennas on the joint European torus. Nucl. Fusion 59, 026008.CrossRefGoogle Scholar
Berk, H.L., Mett, R.R. & Lindberg, D.M. 1993 Arbitrary mode number boundary layer theory for nonideal toroidal Alfvén modes. Phys. Fluids B 5, 3969.CrossRefGoogle Scholar
Berk, H.L., Van Dam, J.W., Guo, Z. & Lindberg, D.M. 1992 Continuum damping of low-n toroidicity-induced shear Alfvén eigenmodes. Phys. Fluids B 4, 18061835.CrossRefGoogle Scholar
Borba, D., Fasoli, A., Gorelenkov, N.N., Gunter, S., Lauber, P., Mellet, N., Nazikian, R., Panis, T., Pinches, S.D., Spong, D., et al. 2010 The influence of plasma shaping on the damping of toroidal Alfvén eigenmodes. In Proceedings of 23rd IAEA Fusion Energy Conference, Daejeon, Republic of Korea, pp. 1–8. IAEA.Google Scholar
Borba, D. & Kerner, W. 1999 CASTOR-K: stability analysis of Alfvén Eigenmodes in the presence of energetic ions in Tokamaks. J. Comput. Phys. 153, 101111.CrossRefGoogle Scholar
Bowden, G.W., Koenies, A., Hol, M.J., Gorelenkov, N.N. & Dennis, G.R. 2014 Comparison of methods for numerical calculation of continuum damping. Phys. Plasmas 21, 052508.CrossRefGoogle Scholar
Breizman, B.N., Berk, H.L., Pekker, M.S., Pinches, S.D. & Sharapov, S.E. 2003 Theory of Alfvén eigenmodes in shear reversed plasmas. Phys. Plasmas 10, 36493660.CrossRefGoogle Scholar
Chu, M.S., Greene, J.M., Lao, L.L., Turnbull, A.D. & Chance, M.S. 1992 A numerical study of the high-n shear Alfvén spectrum gap and the high-n gap mode. Phys. Fluids B 4, 37133721.CrossRefGoogle Scholar
Chu, M.S., Greene, J.M., Ling, W., Turnbull, A.D., Berk, H.L. & Rosebluth, M.N. 1994 A numerical study of the Alfvén continuum damping of toroidal Alfvén eigenmodes. Phys. Plasmas 1, 12141225.CrossRefGoogle Scholar
Collins, C.S., Heidbrink, W.W., Austin, M.E., Kramer, G.J., Pace, D.C., Petty, C.C., Stagner, L., Van Zeeland, M.A., White, R.B., Zhu, Y.B., et al. 2016 Observation of critical gradient behavior in Alfvén eigenmode induced fast-ion transport. Phys. Rev. Lett. 116, 095001.CrossRefGoogle ScholarPubMed
Duarte, V.N., Lestz, J.B., Gorelenkov, N.N. & White, R.B. 2023 Shifting and splitting of resonance lines due to dynamical friction in plasmas. Phys. Rev. Lett. 130, 105101.CrossRefGoogle ScholarPubMed
Fitzgerald, M., Sharapov, S.E., Rodrigues, P. & Borba, D. 2016 Predictive nonlinear studies of TAE-induced alpha-particle transport in the $Q=10$ ITER baseline scenario. Nucl. Fusion 56, 112010.CrossRefGoogle Scholar
Fu, G.Y., Berk, H.L. & Pletzer, A. 2005 Kinetic damping of toroidal Alfvén eigenmodes. Phys. Plasmas 12 (8), 082505.CrossRefGoogle Scholar
Fu, G.Y. & Cheng, C.Z. 1992 Excitation of high-$n$ toroidicity-induced shear Alfvén eigenmodes by energetic particles and fusion alpha particles in tokamaks. Phys. Fluids B 4, 37223734.CrossRefGoogle Scholar
Fu, G.Y., Cheng, C.Z., Budny, R., Chang, Z., Darrow, D.S., Fredrickson, E., Mazzucato, E., Nazikian, R., Wong, K.L. & Zweben, S. 1996 Analysis of alpha particle-driven toroidal Alfvén eigenmodes in Tokamak Fusion Test Reactor deuterium-tritium experiments. Phys. Plasmas 3, 40364045.CrossRefGoogle Scholar
Fu, G.Y., Cheng, C.Z., Budny, R., Chang, Z., Darrow, D.S., Fredrickson, E., Mazzucato, E., Nazikian, R. & Zweben, S. 1995 Stability analysis of toroidicity-induced Alfvén eigenmodes in TFTR deuterium-tritium experiments. Phys. Rev. Lett. 75, 23362339.CrossRefGoogle ScholarPubMed
Fu, G.Y., Cheng, C.Z. & Wong, K.L. 1993 Stability of the toroidicity-induced Alfvén eigenmode in axisymmetric toroidal equilibria. Phys. Fluids B 5, 40404050.CrossRefGoogle Scholar
Ghantous, K., Berk, H.L. & Gorelenkov, N.N. 2014 Comparing the line broadened quasilinear model to vlasov code. Phys. Plasmas 21, 032119.CrossRefGoogle Scholar
Gorelenkov, N.N. 2016 Energetic particle-driven compressional Alfvén eigenmodes and prospects for ion cyclotron emission studies in fusion plasmas. New J. Phys. 18, 105010.CrossRefGoogle Scholar
Gorelenkov, N.N. & Berk, H.L. 2021 Comment on “Theory of Alfvén-slow frequency gaps and discovery of Alfvén-slow eigenmodes in tokamaks” [phys. plasmas 26, 082508 (2019)]. Phys. Plasmas 28 (07), 074701.CrossRefGoogle Scholar
Gorelenkov, N.N., Berk, H.L., Fredrickson, E. & Sharapov, S.E. 2007 Predictions and observations of low-shear beta-induced shear Alfvén-acoustic eigenmodes in toroidal plasmas. Phys. Lett. A 370, 7077.CrossRefGoogle Scholar
Gorelenkov, N.N., Cheng, C.Z. & Fu, G.Y. 1999 Fast particle finite orbit width and Larmor radius effects on low-n toroidicity induced Alfvén eigenmode excitation. Phys. Plasmas 6, 28022807.CrossRefGoogle Scholar
Gorelenkov, N.N. & Duarte, V.N. 2021 Microturbulence-mediated route for energetic ion transport and Alfvénic mode amplitude oscillations in tokamaks. Phys. Lett. A 386, 126944.CrossRefGoogle Scholar
Gorelenkov, N.N., Duarte, V.N., Collins, C.S., Podestà, M. & White, R.B. 2019 Verification and application of resonance broadened quasi-linear (RBQ) model with multiple Alfvén instabilities. Phys. Plasmas 26 (07), 072507.CrossRefGoogle Scholar
Gorelenkov, N.N., Duarte, V.N., Gorelenkova, M.V., Podesta, M., Lin, Zh. & Pinches, S.D. 2024 Fast ion relaxation in ITER mediated by Alfvén instabilities. Nucl. Fusion 64, 076061.CrossRefGoogle Scholar
Gorelenkov, N.N., Fredrickson, E.D., Belova, E., Cheng, C.Z., Gates, D., Kaye, S. & White, R.B. 2003 Theory and observations of high frequency Alfvén eigenmodes in low aspect ratio plasmas. Nucl. Fusion 43, 228233.CrossRefGoogle Scholar
Gorelenkov, N.N., Kramer, G.J. & Nazikian, R. 2011 Combined ideal and kinetic effects on reversed shear Alfvén eigenmodes. Phys. Plasma 18, 102503.CrossRefGoogle Scholar
Gorelenkov, N.N., Pinches, S.D. & Toi, K. 2014 Energetic particle physics in fusion research in preparation for burning plasma experiments. Nucl. Fusion 54, 125001.CrossRefGoogle Scholar
Gorelenkov, N.N. & Sharapov, S.E. 1992 On the collisional damping of TAE-modes on trapped electrons in tokamaks. Phys. Scr. 45, 163166.CrossRefGoogle Scholar
Heidbrink, W.W. & White, R.B. 2020 Mechanisms of energetic-particle transport in magnetically confined plasmas. Phys. Plasmas 27, 030901.CrossRefGoogle Scholar
Kaufman, A.N. 1972 Reformulation of quasi-linear theory. J. Plasma Phys. 8 (1), 15.CrossRefGoogle Scholar
Kuvshinov, B.N. 1994 Magnetohydrodynamic model for plasma instabilities in the ion-kinetic regime. Plasma Phys. Control. Fusion 36, 867.CrossRefGoogle Scholar
Lauber, P. 2013 Super-thermal particles in hot plasma-kinetic models, numerical solution strategies, and comparison to tokamak experiments. Phys. Rep. 533, 3368.CrossRefGoogle Scholar
Lauber, P., Günter, S. & Pinches, S.D. 2005 Kinetic properties of shear Alfvén eigenmodes in tokamak plasmas. Phys. Plasmas 12, 122501.CrossRefGoogle Scholar
Lin, Z., Hahm, T.S., Lee, W.W., Tang, W.M. & White, R.B. 1998 Gyrokinetic simulations of toroidal Alfvén eigenmodes excited by energetic ions and external antennas on the joint European torus. Science 281, 18351845.CrossRefGoogle Scholar
Mett, R.R. & Mahajan, S.M. 1992 Kinetic theory of toroidicity-induced Alfvén eigenmodes. Phys. Fluids B 4, 28852893.CrossRefGoogle Scholar
Nazikian, R., Kramer, G.J., Cheng, C.Z., Gorelenkov, N.N., Berk, H.L. & Sharapov, S.E. 2003 New interpretation of alpha-particle-driven instabilities in deuterium-tritium experiments on the tokamak fusion test reactor. Phys. Rev. Lett. 91, 125003.CrossRefGoogle ScholarPubMed
Pegoraro, F., Porcelli, F. & Schep, T.J. 1989 Internal kink modes in the ion-kinetic regime. Phys. Fluids B 1, 364374.CrossRefGoogle Scholar
Pinches, S.D., Chapman, I.T., Lauber, P.W., Oliver, H.J.C., Sharapov, S.E., Shinohara, K. & Tani, K. 2015 Energetic ions in ITER plasmas. Phys. Plasmas 22, 021807.CrossRefGoogle Scholar
Rodrigues, P. & Cella, F. 2021 High-order geodesic coupling of shear-Alfvén and acoustic continua in tokamaks. Nucl. Fusion 61, 096001.CrossRefGoogle Scholar
Schneller, M., Lauber, P., Brüdgam, M., Pinches, S.D. & Günter, S. 2016 Nonlinear energetic particle transport in the presence of multiple Alfvénic waves in ITER. Plasma Phys. Control Fusion 58, 014019.CrossRefGoogle Scholar
Taimourzadeh, S., Bass, E.M., Chen, Y., Collins, C., Gorelenkov, N.N., Könies, A., Lu, Z.X., Spong, D.A., Todo, Y., Austin, M.E., et al. 2019 Verification and validation of integrated simulation of energetic particles in fusion plasmas. Nucl. Fusion 59 (6), 066006.CrossRefGoogle Scholar
Turnbull, A.D., Strait, E.J., Heidbrink, W.W., Chu, M.S., Duong, H.H., Greene, J.M., Lao, L.L., Taylor, T.S. & Thompson, S.J. 1993 Global Alfvén modes: theory and experiment. Phys. Fluids B 5, 25462553.CrossRefGoogle Scholar
Van Zeeland, M.A., Austin, M.E., Gorelenkov, N.N., Heidbrink, W.W., Kramer, G.J., Makowski, M.A., McKee, G.R., Nazikian, R., Ruskov, E. & Turnbull, A.D. 2007 Coupling of global toroidal Alfvén eigenmodes and reversed shear Alfvén eigenmodes in DIII-D. Phys. Plasmas 14, 056102.CrossRefGoogle Scholar
Yu, L., Fu, G.Y. & Sheng, Z.M. 2009 Kinetic damping of Alfvén eigenmodes in general tokamak geometry. Phys. Plasmas 16, 072505.CrossRefGoogle Scholar
Zonca, F., Chen, L., Dong, J.Q. & Santoro, R.A. 2014 Theory on excitations of drift Alfvén waves by energetic particles. I. Variational formulation. Phys. Plasmas 21, 072120.CrossRefGoogle Scholar