Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-26T00:56:17.388Z Has data issue: false hasContentIssue false

Energetic ion distribution resulting from neutral beam injection in tokamaks

Published online by Cambridge University Press:  13 March 2009

John D. Gaffey Jr
Affiliation:
Center for Theoretical Physics, Department of Physics and Astronomy, University of Maryland, College Park, Maryland 20742, U.S.A. and Institute de Fisica, Universidade Federal do Rio Grande do Sul,†90.000 Porto Alegre, Brazil

Abstract

The Fokker-Planck equation is studied for an energetic ion beam injected into a magnetized plasma consisting of Maxwellian ions and electrons with υthi ≪υb≪ υthe. The time evolution of the fast ion distribution is given in terms of an infinite sum of Legendre polynomials for distributions that are axisymmetric about the magnetic field. The effect of charge exchange is included. The resulting ion distribution is somewhat isotropic for velocities much less than the injection velocity, however, the distribution is sharply peaked in both energy and pitch angle for velocities near the injection velocity. Approximate asymptotic expressions are given for the distribution in the vicinity of the injected beam and for velocities greater than the injection velocity. The effect of a weak parallel electric field is also given.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1976

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abramowitz, M. & Stegun, I. 1966 Handbook of Mathematical Functions, U. S. Government Printing Office.CrossRefGoogle Scholar
Berk, H., Horton, W., Rutherford, P. H. & Rosenbluth, M. N. 1975 Nucl. Fusion, 15, 819.Google Scholar
Berry, L. A., Callen, J. D., Colchin, R. J., Kelley, G. G., Lyon, J. F. & Rome, J. A. 1975 Phys. Rev. Lett. 34, 1085.CrossRefGoogle Scholar
Callen, J. D., Colchin, J. G., Fowler, R. H., McAlees, D. G. & Rome, J. A. 1974 paper IAEA-CN-33/A16–3 presented at IAEA meeting on Plasma Physics and Controlled Fusion Research, Tokyo.Google Scholar
Chrandrasekhar, S. 1943 Astrophys. J. 97, 255.CrossRefGoogle Scholar
Cordey, J. G. & Core, W. G. F. 1974 Phys. Fluids, 17, 1626.Google Scholar
Cordey, J. G. & Houghton, M. J. 1973 Nucl. Fusion, 13, 215.Google Scholar
Dreicer, H. 1960 Phys. Rev. 117, 329.CrossRefGoogle Scholar
Fried, B. D. & Conte, S. D. 1961 The Plasma Dispersion Function. Academic.Google Scholar
Furth, H. P. & Rutherford, P. H. 1972 Phys. Rev. Lett. 28, 545.CrossRefGoogle Scholar
Gaffey, J. D. 1974 Ph.D. dissertation, University of California, San Diego.Google Scholar
Gaffey, J. D. & Thompson, W. B. 1974 Bull. Am. Phys. Soc. 19, 896.Google Scholar
Gaffey, J. D. 1975 paper presented at Two-Component Plasma meeting, Berkeley, Calif.Google Scholar
Glasser, A. H. 1972 Ph.D. dissertation, University of California, San Diego.Google Scholar
Goldston, R. J. 1975 Nucl. Fusion, 15, 651.Google Scholar
Kulsrud, R. M., Sun, Y. C., Winsor, N. K. & Fallon, H. A. 1973 Phys. Rev. Lett. 31, 690.CrossRefGoogle Scholar
Landau, L. D. 1936 Phys. Z. Sowjetunion, 10, 154.Google Scholar
Montgomery, D. C. & Tidman, D. A. 1964 Plasma Kinetic Theory. McGraw-Hill.Google Scholar
Ohkawa, T. 1970 Nucl. Fusion, 10, 185.CrossRefGoogle Scholar
Rome, J. A., McAlees, D. G., Callen, J. D. & Fowler, R. H. 1976 Nucl. Fusion, 16, 55.Google Scholar
Rose, D. J. & Clark, M. 1961 Plasmas and Controlled Fusion, M.I.T. Press.Google Scholar
Rosenbluth, M. N., MacDonald, W. M. & Judd, D. L. 1957 Phys. Rev. 107, 1.CrossRefGoogle Scholar
Sigmar, D. J. & Clarke, J. F. 1976 Phys. Fluids (to be published).Google Scholar
Spitzer, L. 1962 The Physics of Fully Ionized Oases, p. 128129. Interscience.Google Scholar
Stix, T. H. 1972 Plasma Phys. 14, 367.Google Scholar
Stix, T. H. 1973 Phys. Fluids, 16, 1922.Google Scholar
Thompson, W. B. 1964 An Introduction to Plasma Physics. Addison-Wesley.Google Scholar