Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-19T07:10:49.177Z Has data issue: false hasContentIssue false

Effects of nonlinear plasma wake field on the dust-lattice wave in complex plasmas

Published online by Cambridge University Press:  16 January 2017

Myoung-Jae Lee
Affiliation:
Department of Physics, Hanyang University, Seoul 04763, South Korea Research Institute for Natural Sciences, Hanyang University, Seoul 04763, South Korea
Young-Dae Jung*
Affiliation:
Department of Electrical and Computer Engineering, MC 0407, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0407, USA Department of Applied Physics and Department of Bionanotechnology, Hanyang University, Ansan, Kyunggi-Do 15588, South Korea
*
Email address for correspondence: [email protected]

Abstract

The influence of a nonlinear ion wake field on the dust-lattice wave is investigated in complex dusty plasmas. The dispersion relation for the dust-lattice wave is derived from the equation of motion including the contribution due to the nearest-neighbour dust grain interaction. The results show that the nonlinear wake-field effect increases the wave frequency, especially at the maximum peak positions. It is found that the oscillatory behaviour of the dust-lattice wave enhances with an increase of the spacing of the dust grains. It is also found that the amplitude of the dust-lattice wave significantly decreases with an increase of the inter-dust grain distance. In addition, it is found that the amplitude of the dust-lattice wave increases with increasing Debye length. The variation of the dust-lattice wave due to the Mach number and plasma parameters is also discussed.

Keywords

Type
Research Article
Copyright
© Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akbari-Moghanjoughi, M. 2010 Double-wells and double-layers in dusty Fermi–Dirac plasmas: comparison with the semiclassical Thomas–Fermi counterpart. Phys. Plasmas 17, 123709.CrossRefGoogle Scholar
Akbari-Moghanjoughi, M. 2012 Nonlinear excitations in strongly coupled Fermi–Dirac plasmas. Phys. Plasmas 19, 042701.Google Scholar
Akbari-Moghanjoughi, M. 2013 Quantum Bohm correction to polarization spectrum of graphene. Phys. Plasmas 20, 102115.Google Scholar
Akbari-Moghanjoughi, M. & Eliasson, B. 2016 Hydrodynamic theory of partially degenerate electron–hole fluids in semiconductors. Phys. Scr. 91, 105601.Google Scholar
Baimbetov, F. B., Nurekenov, K. T. & Ramazanov, T. S. 1995 Pseudopotential theory of classical non-ideal plasmas. Phys. Lett. A 202, 211214.CrossRefGoogle Scholar
Bouchoule, A. 1999 Dusty Plasmas: Physics, Chemistry and Technological Impacts in Plasma Processing. Wiley.Google Scholar
Hong, W.-P. & Jung, Y.-D. 2014 Nonthermal Lorentzian wake-field effects on collision processes in complex. Phys. Plasmas 21, 103708.Google Scholar
Ishihara, O. 1998 Plasma crystals – structure and stability. Phys. Scr. T 75, 79.CrossRefGoogle Scholar
Jamil, M., Ali, M., Rasheed, A., Zubia, K. & Salimullah, M. 2015 Dust-lower-hybrid instability with fluctuating charge in quantum plasmas. Phys. Plasmas 22, 032107.Google Scholar
Jamil, M., Mir, Z., Asif, M. & Salimullah, M. 2014 Jeans stability in collisional quantum dusty magnetoplasmas. Phys. Plasmas 21, 092111.Google Scholar
Jung, Y.-D. & Hong, W.-P. 2012 Influence of the ion wake-field on the eikonal cross section for the electron–dust collision in dusty plasmas. J. Plasma Phys. 78, 559563.Google Scholar
Ki, D.-H. & Jung, Y.-D. 2013 Influence of the plasma absorption on the longitudinal dust lattice waves in dusty plasmas. Japan. J. Appl. Phys. 52, 050205.Google Scholar
Kompaneets, R., Morfill, G. E. & Ivlev, A. V. 2009 Design of new binary interaction classes in complex plasmas. Phys. Plasmas 16, 043705.Google Scholar
Marklund, M. & Shukla, P. K. 2006 Nonlinear collective effects in photon-photon and photon-plasma interactions. Rev. Mod. Phys. 78, 591640.Google Scholar
Mendis, D. A. & Rosenberg, M. 1994 Cosmic dusty plasma. Annu. Rev. Astron. Astrophys. 32, 419.Google Scholar
Nam, D.-Y. & Jung, Y.-D. 2012 Influence of the nonthermal and nonlinear shielding on the dust-lattice wave in Lorentzian plasmas. Phys. Scr. 86, 025502.Google Scholar
Ramazanov, T. S. & Dzhumagulova, K. N. 2002 Effective screened potentials of strongly coupled semiclassical plasma. Phys. Plasmas 9, 3758.Google Scholar
Ramazanov, T. S., Dzhumagulova, K. N. & Omarbakiyeva, Y. A. 2005 Effective polarization interaction potential ‘charge-atom’ for partially ionized dense plasma. Phys. Plasmas 12, 092702.Google Scholar
Ramazanov, T. S. & Kodanova, S. K. 2001 Coulomb logarithm of a nonideal plasma. Phys. Plasmas 8, 5049.Google Scholar
Ramazanov, T. S., Moldabekov, Z. A., Dzhumagulova, K. N. & Muratov, M. M. 2011 Pseudopotentials of the particles interactions in complex plasmas. Phys. Plasmas 18, 103705.Google Scholar
Shevelko, V. P. & Vainshtein, L. A. 1993 Atomic Physics for Hot Plasmas. Institute of Physics.Google Scholar
Shukla, P. K. & Eliasson, B. 2012 Novel attractive force between ions in quantum plasmas. Phys. Rev. Lett. 108, 165007.Google Scholar
Shukla, P. K. & Mamum, A. A. 2001 Introduction to Dusty Plasma Physics. Institute of Physics Publishing.Google Scholar
Shukla, P. K. & Spatschek, K.-H. 1973 Shielding of a moving test charge in a turbulent plasma. Phys. Lett. A 44, 398400.Google Scholar
Tegeback, R. & Stenflo, L. 1975 Test charge potentials in turbulent plasmas. Plasma Phys. 17, 991993.CrossRefGoogle Scholar
Toda, M. 1967 Vibration of a chain with nonlinear interaction. J. Phys. Soc. Japan 22, 431.Google Scholar
Tsytovich, V. N. 1972 An Introduction to the Theory of Plasma Turbulence. Pergamon.Google Scholar
Whitham, G. B. 1999 Linear and Nonlinear Waves. Wiley.Google Scholar