Hostname: page-component-848d4c4894-sjtt6 Total loading time: 0 Render date: 2024-07-02T16:14:30.185Z Has data issue: false hasContentIssue false

Effects observed in numerical simulation of high-beta plasma with hot ions in an axisymmetric mirror machine

Published online by Cambridge University Press:  12 April 2024

I.S. Chernoshtanov*
Affiliation:
Institute of Computational Mathematics and Mathematical Geophysics SB RAS, Novosibirsk 630090, Russia
I.G. Chernykh
Affiliation:
Institute of Computational Mathematics and Mathematical Geophysics SB RAS, Novosibirsk 630090, Russia
G.I. Dudnikova
Affiliation:
Institute of Computational Mathematics and Mathematical Geophysics SB RAS, Novosibirsk 630090, Russia
M.A. Boronina
Affiliation:
Institute of Computational Mathematics and Mathematical Geophysics SB RAS, Novosibirsk 630090, Russia
T.V. Liseykina
Affiliation:
Institute of Computational Mathematics and Mathematical Geophysics SB RAS, Novosibirsk 630090, Russia
V.A. Vshivkov
Affiliation:
Institute of Computational Mathematics and Mathematical Geophysics SB RAS, Novosibirsk 630090, Russia
*
Email addresses for correspondence: [email protected]

Abstract

We present the results of numerical simulation by two-dimensional hybrid particle-in-cell code of high-beta plasma with hot ions in an axisymmetric mirror machine. Two particular effects are discussed: the self-rotating of plasma with Maxwellian ions in regime of diamagnetic confinement and the excitation of axisymmetric magnetosonic waves in a high-beta plasma with sloshing ions.

Type
Research Article
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bagryansky, P.A., Akhmetov, T.D., Chernoshtanov, I.S., Deichuli, P.P., Ivanov, A.A., Lizunov, A.A., Maximov, V.V., Mishagin, V.V., Murakhtin, S.V., Pinzhenin, E.I., et al. 2016 Status of the experiment on magnetic field reversal at BINP. AIP Conf. Proc. 1771, 030015.CrossRefGoogle Scholar
Bai, X.-N., Caprioli, D., Sironi, L. & Spitkovsky, A. 2015 Magnetohydrodynamic-particle-in-cell method for coupling cosmic rays with a thermal plasma: application to non-relativistic shocks. Astrophys. J. 809 (1), 55.CrossRefGoogle Scholar
Beklemishev, A.D. 2016 Diamagnetic “bubble” equilibria in linear traps. Phys. Plasmas 23, 082506.CrossRefGoogle Scholar
Beklemishev, A.D. & Khristo, M.S. 2019 High-pressure limit of equilibrium in axisymmetric open traps. Plasma Fusion Res. 14, 2403007.Google Scholar
Boronina, M.A., Chernykh, I.G., Genrikh, E.A. & Vshivkov, V.A. 2019 Parallel realization of the hybrid model code for numerical simulation of plasma dynamics. J. Phys.: Conf. Ser. 1336, 012017.Google Scholar
Chernoshtanov, I.S. 2022 Collisionless particle dynamic in an axi-symmetric diamagnetic trap. Plasma Phys. Rep. 48, 7990.CrossRefGoogle Scholar
Gota, H., Binderbauer, M.W., Tajima, T., Putvinski, S., Tuszewski, M., Deng, B.H., Dettrick, S., Gupta, D., Korepanov, S., Magee, R., et al. 2019 Formation of hot, stable, long-lived field-reversed configuration plasmas on the C-2W device. Nucl. Fusion 59, 112009.CrossRefGoogle Scholar
Haines, M.G. 1977 Plasma containment in cusp-shaped magnetic fields. Nucl. Fusion 17, 811858.CrossRefGoogle Scholar
Hockney, R.W. & Eastwood, J.W. 2021 Computer Simulation Using Particles. CRC Press.CrossRefGoogle Scholar
Ivanov, A.A. & Prikhodko, V.V. 2017 Gas dynamic trap: experimental results and future prospects. Phys. Uspekhi 60, 509533.CrossRefGoogle Scholar
Khristo, M.S. & Beklemishev, A.D. 2022 Two-dimensional MHD equilibria of diamagnetic bubble in gas-dynamic trap. Plasma Phys. Control. Fusion 64, 095019.CrossRefGoogle Scholar
Liseykina, T.V., Vshivkov, V.A. & Kholiyarov, U.A. 2024 An efficient algorithm for calculating the magnetic field in a cylindrical plasma trap. Lobachevskii J. Maths 45, 7584.Google Scholar
Postupaev, V.V., Batkin, V.I., Beklemishev, A.D., Burdakov, A.V., Burmasov, V.S., Chernoshtanov, I.S., Gorbovsky, A.I., Ivanov, I.A., Kuklin, K.N., Mekler, K.I., et al. 2017 The GOL-NB program: further steps in multiple-mirror confinement research. Nucl. Fusion 57, 036012.CrossRefGoogle Scholar
Simonen, T.C., Allen, S.L., Casper, T.A., Clauser, J.F., Clower, C.A., Coensgen, F.H., Correll, D.L., Cummins, W.F., Damm, C.C., Flammer, M., et al. 1983 Operation of the tandem-mirror plasma experiment with skew neutral-beam injection. Phys. Rev. Lett. 50, 1668.CrossRefGoogle Scholar
Skovorodin, D.I., Zaytsev, K.V. & Beklemishev, A.D. 2013 Global sound modes in mirror traps with anisotropic pressure. Phys. Plasmas 20, 102123.CrossRefGoogle Scholar
Steinhauer, L.C. 2011 Review of field-reversed configurations. Phys. Plasmas 18, 070501.CrossRefGoogle Scholar
Takizuka, T. & Abe, H. 1977 A binary collision model for plasma simulation with a particle code. J. Comput. Phys. 25, 205219.CrossRefGoogle Scholar
Turner, W.C., Clauser, J.F., Coensgen, F.H., Correll, D.L., Cummins, W.F., Freis, R.P., Goodman, R.K., Hunt, A.L., Kaiser, T.B., Melin, G.M., et al. 1989 Field-reversal experiments in a neutral-beam-injected mirror machine. Nucl. Fusion 19, 10111028.CrossRefGoogle Scholar
Vshivkov, V.A., Soloviev, A.A., Chernoshtanov, I.S. & Efimova, A.A. 2021 Null collision monte carlo simulation model for particle-in-cell method. J. Phys.: Conf. Ser. 2028, 012005.Google Scholar