Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-27T13:33:56.493Z Has data issue: false hasContentIssue false

Dust ion-acoustic solitary waves in a magnetized dusty electronegative plasma

Published online by Cambridge University Press:  19 May 2010

M. G. M. ANOWAR
Affiliation:
Department of Physics, National University, Gazipur-1704, Bangladesh ([email protected])
K. S. ASHRAFI
Affiliation:
Department of Physics, Jahangirnagar University, Savar, Dhaka-1342, Bangladesh
A. A. MAMUN
Affiliation:
Department of Physics, Jahangirnagar University, Savar, Dhaka-1342, Bangladesh

Abstract

The basic features of obliquely propagating dust ion-acoustic (DIA) solitary waves in an adiabatic magnetized dusty electronegative plasma (containing Boltzmann electrons, Boltzmann negative ions, adiabatic positive ions, and negatively charged stationary dust) have been investigated. The reductive perturbation method has been employed to derive the Korteweg–de Vries (KdV) equation which admits a solitary wave solution. The combined effects of ion adiabaticity and external magnetic field (obliqueness), which are found to significantly modify the basic features of the small but finite-amplitude DIA solitary waves, are explicitly examined. The implications of our results in space and laboratory dusty plasmas are briefly discussed.

Type
Papers
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Annaratone, B. M. and Allen, J. E. 2005 J. Phys. D. 38, 26.CrossRefGoogle Scholar
Annaratone, B. M., Antonova, T., Thomas, H. M. and Morfill, G. E. 2004 Phys. Rev. Lett. 93, 185001.CrossRefGoogle Scholar
Anowar, M. G. M. and Mamun, A. A. 2009 J. Plasma Phys. 75, 475.CrossRefGoogle Scholar
Berezhnoj, S. V., Shin, C. B., Boddemeier, U. and Kaganovich, I. 2000 Appl. Phys. Lett. 77, 800.CrossRefGoogle Scholar
Bogdanov, E. A. and Kudryavtsev, A. A. 2001 Tech. Phys. Lett. 27, 905.CrossRefGoogle Scholar
Chabert, P., Lichtenberg, A. J. and Lieberman, M. A. 2007 Phys. Plasmas 14, 093502.CrossRefGoogle Scholar
Chung, T. H. 2009 Phys. Plasmas 16, 063503.CrossRefGoogle Scholar
Coates, A. J., Crary, F. J., Lewis, G. R., Young, D. T., Waite, J. H. and Sittler, E. C. 2007 Geophys. Res. Lett. 34, L22103.Google Scholar
D'Angelo, N. 2004 J. Phys. D 37, 860.CrossRefGoogle Scholar
El-Labany, S. K. and El-Taibany, W. F. 2004 J. Plasma Phys. 70, 69.CrossRefGoogle Scholar
Franklin, R. N. 2002 Plasma Sources Sci. Technol. 11, A31.CrossRefGoogle Scholar
Franklin, R. N. and Snell, J. 2000 J. Plasma Phys. 64, 131.CrossRefGoogle Scholar
Ghim (Kim), Y. and Hershkowitz, N. 2009 Appl. Phys. Lett. 94, 151503.CrossRefGoogle Scholar
Ghosh, S., Ehsan, Z. and Murtaza, G. 2008 Phys. Plasmas 15, 023701-023701-7.CrossRefGoogle Scholar
Kim, S. H. and Merlino, R. L. 2006 Phys. Plasmas 13, 052118.CrossRefGoogle Scholar
Kimura, T., Imagaki, K. and Ohe, K. 1998 J. Phys. D: Appl. Phys. 31, 2295.CrossRefGoogle Scholar
Kourakis, I. and Shukla, P. K. 2004a Euro. Phys. J. D 30, 97.CrossRefGoogle Scholar
Kourakis, I. and Shukla, P. K. 2004b Phys. Scr. 69, 316.CrossRefGoogle Scholar
Lee, L. C. and Kan, J. R. 1981 Phys. Fluids 24, 430.CrossRefGoogle Scholar
Lichtenberg, A. J., Kouznetsov, I. J., Lee, Y. T., Lieberman, M. A., Kaganovich, I. D. and Tsendin, L. D. 1997 Plasma Sources Sci. Technol. 6, 437.CrossRefGoogle Scholar
Lieberman, M. A. and Lichtenberg, A. 2005 Principle of Plasma Discharges and Materials Processing, 2nd edn.New York: Wiley.CrossRefGoogle Scholar
Mamun, A. A., Cairns, R. A. and Shukla, P. K. 2009a Phys. Lett. A 373, 2355.CrossRefGoogle Scholar
Mamun, A. A. and Shukla, P. K. 2003 Phys. Plasmas 65, 1518.CrossRefGoogle Scholar
Mamun, A. A., Shukla, P. K. and Eliasson, B. 2009b Phys. Rev. E 80, 046406.CrossRefGoogle Scholar
Meige, A., Plihon, N., Hagelaar, G. J. M. and Boeuf, J. P. 2007 Phys. Plasmas 14, 053508.CrossRefGoogle Scholar
Merlino, R. L. and Goree, J. 2004 Phys. Today 57, 32.CrossRefGoogle Scholar
Merlino, R. L. and Kim, S. H. 2006 Appl. Phys. Lett. 89, 091501.CrossRefGoogle Scholar
Moslem, W. M. and El-Taibany, W. F. 2005 Phys. Plasmas 12, 122309.CrossRefGoogle Scholar
Plihon, N., Chabert, P. and Corr, C. S. 2007 Phys. Plasmas 14, 013506.CrossRefGoogle Scholar
Rosenberg, M. and Merlino, R. L. 2007 Planet. Space Sci. 55, 1464.CrossRefGoogle Scholar
Rosenberg, M. and Merlino, R. L. 2009 J. Plasma Phys. 75, 495.CrossRefGoogle Scholar
Shukla, P. K. and Eliasson, B. 2009 Rev. Mod. Phys. 81, 23.CrossRefGoogle Scholar
Shukla, P. K. and Yu, M. Y. 1978 J. Math. Phys. 19, 2506.CrossRefGoogle Scholar
Shukla, P. K., Yu, M. Y. and Bharuthram, R. 1991 J. Geophys. Res. 96, 21343.CrossRefGoogle Scholar
Vender, D., Stoffels, W. W., Stoffels, E., Kroesen, G. M. W. and de Hong, F. J. 1995 Phys. Rev. E 51, 2436.CrossRefGoogle Scholar
Washimi, H. and Taniuti, T. 1966 Phys. Rev. Lett. 17, 996.CrossRefGoogle Scholar