Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-20T01:01:36.878Z Has data issue: false hasContentIssue false

Transient nonlinear wave mixing in collisional plasmas

Published online by Cambridge University Press:  13 March 2009

George C. Papen
Affiliation:
University of Wisconsin-Madison, Madison, Wisconsin 53706, U.S.A.
John A. Tataronis
Affiliation:
University of Wisconsin-Madison, Madison, Wisconsin 53706, U.S.A.

Abstract

The time dynamics of two-wave and four-wave mixing in a collisional plasma are explored. Maxwell's equations are coupled to the governing equations of a warm collisional plasma; this is followed by linearization based on a strong undepleted pump wave and simplification by the slowly varying envelope approximation. The resulting equations are solved via Laplace-transform techniques. We predict that in the presence of collisions between the plasma charged particles and background neutrals the two-wave-mixing geometry produces spatial amplification of an applied probe wave under transient (or nearly degenerate) conditions on the frequencies. The four-wave-mixing configuration produces a response that is governed by a ratio of characteristic time constants and the average number of collisions in a characteristic spatial scale. In both configurations enhancement of the plasma response occurs when transient or nearly degenerate conditions generate a moving intensity grating that propagates at a velocity of a natural mode of the plasma. The two-wave-mixing geometry has a single such resonance condition, and the four-wave-mixing geometry has two.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Berger, R. L. & Goldman, M. V. 1974 Phys. Fluids, 18, 207.CrossRefGoogle Scholar
Brigham, E. O. 1971 The Fast Fourier Transform. Prentice-Hall.Google Scholar
Drake, J. K., Kaw, P. K., Lee, Y. C., Schmidt, G., Liu, C. S. & Rosenbluth, M. N. 1974 Phys. Fluids, 4, 778.CrossRefGoogle Scholar
Federici, J. F. & Mansfield, D. K. 1986 J. Opt. Soc. Am., B 3, 1588.CrossRefGoogle Scholar
Fisher, R. A., Suydam, B. R. & Feldman, B. J. 1981 Phys. Rev. A 23, 3071.CrossRefGoogle Scholar
Galeev, A. A. & Sagdeev, R. Z. 1979 Reviews of Plasma Physics, vol. 7 (ed. Leontovich, M. A.). Consultants Bureau.Google Scholar
Kukhtarev, N., Markov, V. & Odulov, S. 1977 Opt. Commun. 23, 338.CrossRefGoogle Scholar
Nebenzahl, I., Ron, A. & Rostoker, N. 1988 a Phys. Rev. Lett. 60, 1030.CrossRefGoogle Scholar
Nebenzahl, I., Ron, A. & Rostoker, N. 1988 b Phys. Fluids, 31, 2144.CrossRefGoogle Scholar
Postan, A. & Ben-Aryeh, Y. 1988 J. Opt. Soc. Am., B 5, 1379.CrossRefGoogle Scholar
Shen, Y. R. 1984 The Principles of Nonlinear Optics, chap. 28 and references therein. Wiley.Google Scholar
Steel, D. G. & Lam, J. F. 1979 Opt. Lett. 4, 363.CrossRefGoogle Scholar
Valley, G. C. & Smirl, A. L. 1988 IEEE J. Quant. Electron. 24, 304.CrossRefGoogle Scholar
Vinetskiï, V. L., Kukhtarev, N. V., Sal'kova, E. N. & Sukhoverkhova, L. G. 1980 a Sov. J. Quan. Electron. 10, 684.CrossRefGoogle Scholar
Vinetskiï, V. L., Kukhtarev, N. V. & Sements, T. I. 1980 b Sov. J. Quant. Electron. 11, 130.CrossRefGoogle Scholar
Vinetskiï, V. L., Kukhtarev, N. K. & Soskin, M. S. 1977 Sov. J. Quant. Electron. 7, 230.CrossRefGoogle Scholar
Yeh, P. 1986 J. Opt. Soc. Am., B 3, 747.CrossRefGoogle Scholar