Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-29T13:25:46.964Z Has data issue: false hasContentIssue false

Toroidal equilibrium of rotating plasma with adiabatic constraints

Published online by Cambridge University Press:  13 March 2009

A. Gałkowski
Affiliation:
Institute of Plasma Physics and Laser Microfusion, 00–908 Warsaw, P.O. Box 49, Poland
R. Żelazny
Affiliation:
Institute of Plasma Physics and Laser Microfusion, 00–908 Warsaw, P.O. Box 49, Poland

Abstract

A numerical technique, alternative to Grad's well-known ADM method has been proposed to deal with the slow adiabatic evolution of a toroidal plasma with flow. The equilibrium problem with prescribed adiabatic constraints may be solved by simultaneous calculations of flux surface geometry and original profile functions. Implications for the problem of bifurcation due to nonlinearity of the governing equations are discussed. In the case of field-aligned sub-Alfvénic flow the system is in the second elliptic regime if β <A2/(1 – A2) at the magnetic axis, where A is the Mach Alfvén number of the flow. Super-Alfvénic flows do not satisfy the local firehose stability criterion.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agim, Y. Z. & Tataronis, J. A. 1985 J. Plasma Phys. 34, 337.CrossRefGoogle Scholar
Baransky, Y. A. 1987 Ideal, steady-state, axisymmetric magnetohydrodynamic equations with flow. Ph.D. thesis, Columbia University.Google Scholar
Dory, R. A. & Peng, Y.-K. M. 1977 Nucl. Fusion 17, 21.CrossRefGoogle Scholar
Fowler, T. K. 1981 Fusion, part A (ed. Teller, E.). Academic.Google Scholar
Grad, H., Hu, P. N. & Stevens, D. C. 1975 Proc. Nat. Acad. Sci. USA 72, 3789.CrossRefGoogle Scholar
Hameiri, E. 1983 Phys. Fluids 26, 230.CrossRefGoogle Scholar
Infeld, E. 1971 Phys. Fluids 14, 2054.CrossRefGoogle Scholar
Kerner, W. & Tokuda, S. 1987 Z. Naturforsch. A 42, 1154.CrossRefGoogle Scholar
Laing, E. W., Roberts, S. I. & Whipple, R. T. P. 1959 J. Nucl. Energy C 1, 49.CrossRefGoogle Scholar
Lao, L. L., Hirshman, S. P., Houlbero, W. A. & Wieland, R. M. 1982 Comp. Phys. Commun. 27, 129.CrossRefGoogle Scholar
Lao, L. L., Hirshman, S. P. & Wieland, R. M. 1981 Phys. Fluids 24, 1431.CrossRefGoogle Scholar
Maschke, E. K. & Perrin, H. 1980 Plasma Phys. 22, 579.CrossRefGoogle Scholar
Semenzato, S., Gruber, R., Iacono, R., Troyon, F. & Zehrfeld, H. P. 1985 École Polytechnique Fédérale de Lausanne Report LRP 258–85.Google Scholar
Semenzato, S., Gruber, R. & Zehrfeld, H. P. 1984 Comp. Phys. Rep. 1, 389.CrossRefGoogle Scholar
Wolfram, S. 1991 Mathematica, 2nd edn.Addison-Wesley.Google Scholar
Zehrfeld, H. P. & Green, B. J. 1972 Nucl. Fusion 12, 569.CrossRefGoogle Scholar
Żelazny, R., Stankiewicz, R., Gałkowski, A. & Potempski, S. 1992 Proceedings of the 1992 International Conference on Plasma Physics, Innsbruck (ed. Freysinger, W., Lackner, K., Schrittwieser, R. & Lindinger, W.), vol. 16C, part II, p. 1537. European Physical Society.Google Scholar
Żelazny, R., Stankiewicz, R., Gałkowski, A. & Potempski, S. 1993 Plasma Phys. Contr. Fusion 35, 1215.CrossRefGoogle Scholar
Żelazny, R., Stankiewicz, R., Gałkowski, A., Potempski, S. & Pietak, R. 1991 JET Joint Undertaking Report JET-R(91)05.Google Scholar