Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-11T22:23:18.708Z Has data issue: false hasContentIssue false

Neoclassical, semi-collisional tearing mode theory in an axisymmetric torus

Published online by Cambridge University Press:  21 November 2017

J. W. Connor*
Affiliation:
CCFE, Culham Science Centre, Abingdon, Oxon OX14 3DB, UK Imperial College of Science and Technology and Medicine, London SW7 2BZ, UK
R. J. Hastie
Affiliation:
CCFE, Culham Science Centre, Abingdon, Oxon OX14 3DB, UK
P. Helander
Affiliation:
Max-Planck-Institut für Plasmaphysik, 17491 Greifswald, Germany
*
Email address for correspondence: [email protected]

Abstract

A set of layer equations for determining the stability of semi-collisional tearing modes in an axisymmetric torus, incorporating neoclassical physics, in the small ion Larmor radius limit, is provided. These can be used as an inner layer module for inclusion in numerical codes that asymptotically match the layer to toroidal calculations of the tearing mode stability index, $\unicode[STIX]{x1D6E5}^{\prime }$. They are more complete than in earlier work and comprise equations for the perturbed electron density and temperature, the ion temperature, Ampère’s law and the vorticity equation, amounting to a twelvth-order set of radial differential equations. While the toroidal geometry is kept quite general when treating the classical and Pfirsch–Schlüter transport, parallel bootstrap current and semi-collisional physics, it is assumed that the fraction of trapped particles is small for the banana regime contribution. This is to justify the use of a model collision term when acting on the localised (in velocity space) solutions that remain after the Spitzer solutions have been exploited to account for the bulk of the passing distributions. In this respect, unlike standard neoclassical transport theory, the calculation involves the second Spitzer solution connected with a parallel temperature gradient, because this stability problem involves parallel temperature gradients that cannot occur in equilibrium toroidal transport theory. Furthermore, a calculation of the linearised neoclassical radial transport of toroidal momentum for general geometry is required to complete the vorticity equation. The solutions of the resulting set of equations do not match properly to the ideal magnetohydrodynamic (MHD) equations at large distances from the layer, and a further, intermediate layer involving ion corrections to the electrical conductivity and ion parallel thermal transport is invoked to achieve this matching and allow one to correctly calculate the layer $\unicode[STIX]{x1D6E5}^{\prime }$.

Type
Research Article
Copyright
© Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Cohen, R. S., Spitzer, L. Jr & McR. Routly, P. 1950 The electrical conductivity of an ionized gas. Phys. Rev. 80 (2), 230238.Google Scholar
Connor, J. W., Grimm, R. C., Hastie, R. J. & Keeping, P. 1973 The conductivity of a toroidal plasma. Nucl. Fusion 13 (2), 211214.Google Scholar
Connor, J. W., Hastie, R. J. & Helander, P. 2009 Linear tearing mode stability equations for a low collisionality toroidal plasma. Plasma Phys. Control. Fusion 51 (1), 015009.Google Scholar
Fitzpatrick, R. 1989 Linear stability of low mode number tearing modes in the banana collisionality regime. Phys. Fluids B 1 (12), 23812396.Google Scholar
Glasser, A. H., Greene, J. M. & Johnson, J. L. 1975 Resistive instabilities in general toroidal plasma configurations. Phys. Fluids 18 (7), 875888.CrossRefGoogle Scholar
Glasser, A. H., Wang, Z. R. & Park, J. K. 2016 Computation of resistive instabilities by matched asymptotic expansions. Phys. Plasmas 23 (11), 112506.Google Scholar
Hahm, T. S. 1988 Neoclassical tearing modes in a tokamak. Phys. Fluids 31 (12), 37093712.Google Scholar
Helander, P. & Sigmar, D. J. 2002 Collisional Transport in Magnetized Plasmas. Cambridge University Press.Google Scholar
Imada, K., Connor, J. W. & Wilson, H. R. 2016 Finite banana width effect on NTM threshold physics. In 43rd EPS Conference on Plasma Physics, Leuven, July 4–8, 2016, paper 05.128, European Physical Society.Google Scholar
Mercier, C. 1960 Un critere necessaire de stabilite hydromagnetique pour un plasma en symetrie de revolution. Nucl. Fusion 1 (1), 4753.Google Scholar
Rosenbluth, M. N., Hazeltine, R. D. & Hinton, F. L. 1972 Plasma transport in toroidal confinement systems. Phys. Fluids 15 (1), 116140.Google Scholar
Rutherford, P. H., Kovrizhnykh, L. M., Rosenbluth, M. N. & Hinton, F. L. 1970 Effect of longitudinal electric field on toroidal diffusion. Phys. Rev. Lett. 25 (16), 10901093.Google Scholar
Smolyakov, A. 1993 Nonlinear evolution of tearing modes in inhomogeneous plasmas. Plasma Phys. Control. Fusion 35 (6), 657687.Google Scholar
Spitzer, L. Jr & Harm, R. 1953 Transport phenomena in a completely ionized gas. Phys. Rev. 89 (1), 977981.Google Scholar
Tang, W. M., Connor, J. W. & Hastie, R. J. 1980 Kinetic-ballooning-mode theory in general geometry. Nucl. Fusion 20 (11), 14391453.Google Scholar
Wilson, H. R., Connor, J. W., Hastie, R. J. & Hegna, C. C. 1996 Threshold for neoclassical magnetic island in a low collision frequency tokamak. Phys. Plasmas 3 (1), 248265.Google Scholar
Wong, S. K. & Chan, V. S. 2005 The neoclassical angular momentum flux in the large aspect ratio limit. Phys. Plasmas 12 (9), 092513.Google Scholar