Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-11T07:18:20.148Z Has data issue: false hasContentIssue false

Magnetized Kelvin–Helmholtz instability: theory and simulations in the Earth’s magnetosphere context

Published online by Cambridge University Press:  02 November 2017

Matteo Faganello*
Affiliation:
Aix-Marseille University, CNRS, PIIM UMR 7345, Centre de Saint-Jérome Case 322, Avenue Escadrille Normandie Nièmen, 13397 Marseille, France
Francesco Califano
Affiliation:
Department of Physics, University of Pisa, Largo Pontecorvo 3, 56127 Pisa, Italy
*
Email address for correspondence: [email protected]

Abstract

The Kelvin–Helmholtz instability, proposed a long time ago for its role in and impact on the transport properties at magnetospheric flanks, has been widely investigated in the Earth’s magnetosphere context. This review covers more than fifty years of theoretical and numerical efforts in investigating the evolution of Kelvin–Helmholtz vortices and how the rich nonlinear dynamics they drive allow solar wind plasma bubbles to enter into the magnetosphere. Special care is devoted to pointing out the main advantages and weak points of the different plasma models that can be adopted for describing the collisionless magnetospheric medium and in underlying the important role of the three-dimensional geometry of the system.

Type
Review
Copyright
© Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adamson, E. et al. 2016 The Kelvin–Helmholtz instability under Parker–Spiral interplanetary magnetic field conditions at the magnetospheric flanks. Adv. Space Res. 58, 218.Google Scholar
Alves, E. P. et al. 2012 Large-scale magnetic field generation via the kinetic Kelvin–Helmholtz instability in unmagnetized scenarios. Astrophys. J. Lett. 746, L14.Google Scholar
Andreussi, T. et al. 2012 Hamiltonian magnetohydrodynamics: helically symmetric formulation, Casimir invariants, and equilibrium variational principles. Phys. Plasmas 19, 052102.CrossRefGoogle Scholar
Axford, W. I. 1960 The stability of plane current-vortex sheets. Q. J. Mech. Appl. Maths 8, 314.Google Scholar
Axford, W. I. & Hines, C. O. 1961 A unifying theory of high latitude geophysical phenomena and geomagnetic storms. Can. J. Phys. 39, 1433.Google Scholar
Balbus, S. A. & Hawley, J. F. 1991 A powerful local shear instability in weakly magnetized disks. I. Linear analysis. Astrophys. J. 376, 214.Google Scholar
Balbus, S. A. & Hawley, J. F. 1998 Instability, turbulence, and enhanced transport in accretion disks. Rev. Mod. Phys. 70, 1.CrossRefGoogle Scholar
Baty, H. et al. 2003 The two-dimensional magnetohydrodynamic Kelvin–Helmholtz instability: compressibility and large-scale coalescence effects. Phys. Plasmas 10, 4661.Google Scholar
Bavassano Cattaneo, M. B. et al. 2010 Global reconnection topology as inferred from plasma observations inside Kelvin–Helmholtz vortices. Ann. Geophys. 28, 893.Google Scholar
Belmont, G. & Chanteur, G. 1989 Advances in magnetopause Kelvin–Helmholtz instability studies. Phys. Scr. 40, 124.Google Scholar
Bettarini, L. et al. 2006 Tearing and Kelvin–Helmholtz instabilities in the heliospheric plasma. Astron. Astrophys. 452, 321.Google Scholar
Bian, N. H. & Vekstein, G. 2007a On the two-fluid modification of the resistive tearing instability. Phys. Plasmas 14, 072107.Google Scholar
Bian, N. H. & Vekstein, G. 2007b Is the ‘out-of-plane’ magnetic perturbation always a quadrupole in the Hall-mediated magnetic reconnection? Phys. Plasmas 14, 120702.Google Scholar
Birn, J. et al. 2001 Geospace Environmental Modeling (GEM) magnetic reconnection challenge. J. Geophys. Res. 106, 3715.CrossRefGoogle Scholar
Biskamp, D. & Schindler, K. 1971 Instability of two-dimensional collisionless plasmas with neutral points. Plasma Phys. 11, 1013.Google Scholar
Borgogno, D. et al. 2015 Double-reconnected magnetic structures driven by Kelvin–Helmholtz vortices at the Earth’s magnetosphere. Plasma Phys. 22, 032301.CrossRefGoogle Scholar
Borovsky, J. E. et al. 1998 The driving of the plasma sheet by the solar wind. J. Geophys. Res. 103, 17617.Google Scholar
Brackbill, J. U. & Knoll, D. A. 2001 Transient magnetic reconnection and unstable shear layers. Phys. Rev. Lett. 86, 2329.Google Scholar
Cai, D. et al. 1990 Kinetic equilibria of plasma shear layers. Phys. Fluids B 2, 75.Google Scholar
Cai, D. et al. 1993a Particle loading for a plasma shear layer in a magnetic field. J. Comput. Phys. 107, 84.CrossRefGoogle Scholar
Cai, D. et al. 1993b Particle simulation of the kinetic Kelvin–Helmholtz instability in a magnetoplasma. Phys. Fluids B 5, 3507.CrossRefGoogle Scholar
Califano, F. et al. 2009 Solar wind interaction with the Earth’s magnetosphere: the role of reconnection in the presence of a large scale sheared flow. Nonlinear Process. Geophys. 16, 1.Google Scholar
Case, K. M. 1960 Stability of inviscid plane Couette flow. Phys. Fluids 3, 143.Google Scholar
Cerri, S. S. et al. 2013 Extended fluid models: pressure tensor effects and equilibria. Phys. Plasmas 20, 112112.CrossRefGoogle Scholar
Cerri, S. S. et al. 2014 Pressure tensor in the presence of velocity shear: stationary solutions and self-consistent equilibria. Phys. Plasmas 21, 112109.CrossRefGoogle Scholar
Chacón, L. et al. 2003 Hall MHD effects on the 2D Kelvin–Helmholtz/tearing instability. Phys. Lett. A 308, 187.CrossRefGoogle Scholar
Chandrasekhar, S. 1961 Hydrodynamic and Hydromagnetic Stability. Oxford University Press.Google Scholar
Chaston, C. C. et al. 2007 Mode conversion and anomalous transport in Kelvin–Helmholtz vortices and kinetic Alfvén waves at the Earth’s magnetopause. Phys. Rev. Lett. 99, 175004.Google Scholar
Chaston, C. C. et al. 2013 Ion heating by broadband electromagnetic waves in the magnetosheath and across the magnetopause. J. Geophys. Res. 118, 5579.Google Scholar
Chen, X. L. & Morrison, P. J. 1990 Resistive tearing instability with equilibrium shear flow. Phys. Fluids B 2, 495.CrossRefGoogle Scholar
Chen, Q. et al. 1997 Tearing instability, Kelvin–Helmholtz instability, and magnetic reconnection. J. Geophys. Res. 102, 151.Google Scholar
Cho, K.-S. et al. 2008 A coronal mass ejection and hard X-ray emissions associated with Kink instability. Astrophys. J. 703, 1.Google Scholar
Claudepierre, S. G. et al. 2008 Solar wind driving of magnetospheric ULF waves: pulsations driven by velocity shear at the magnetopause. J. Geophys. Res. 113, A05218.Google Scholar
Collado-Vega, Y. M. et al. 2007 MHD flow visualization of magnetopause boundary region vortices observed during high-speed streams. J. Geophys. Res. 112, A06213.CrossRefGoogle Scholar
Contin, J. E. et al. 2003 Theoretical results on the latitude dependence of the Kelvin–Helmholtz instability at the dayside magnetopause for northward interplanetary magnetic fields. J. Geophys. Res. 108, 1227.CrossRefGoogle Scholar
Coppi, B. 1964 ‘Inertial’ instabilities in plasmas. Phys. Lett. 11, 226.Google Scholar
Cowee, M. M. et al. 2009 Two-dimensional hybrid simulations of superdiffusion at the magnetopause driven by Kelvin–Helmholtz instability. J. Geophys. Res. 114, A10209.Google Scholar
Cowee, M. M. et al. 2010 Hybrid simulations of plasma transport by Kelvin–Helmholtz instability at the magnetopause: density variations and magnetic shear. J. Geophys. Res. 115, A06214.CrossRefGoogle Scholar
Del Sarto, D. et al. 2016 Pressure anisotropy and small spatial scales induced by velocity shear. Phys. Rev. E 93, 053203.Google Scholar
Dimmock, A. P. et al. 2015 A statistical study into the spatial distribution and dawn–dusk asymmetry of dayside magnetosheath ion temperatures as a function of upstream solar wind conditions. J. Geophys. Res. 120, 2767.Google Scholar
Drazin, P. G. & Reid, W. H. 1981 Hydrodynamic Stability. Cambridge University Press.Google Scholar
Dungey, J. W. 1955 Electrodynamics of the outer atmosphere. In Proceedings of the Ionosphere Conference, vol. 225. The Physical Society of London.Google Scholar
Dungey, J. W. 1961 Interplanetary magnetic field and the auroral zones. Phys. Rev. Lett. 6, 47.Google Scholar
Dubois, A. M. et al. 2014 Experimental characterization of broadband electrostatic noise due to plasma compression. J. Geophys. Res. 119, 5624.CrossRefGoogle Scholar
Eastman, T. E. et al. 1976 The magnetospheric boundary layer: site of plasma, momentum and energy transfer from the magnetosheath into the magnetosphere. Geophys. Res. Lett. 3, 685.CrossRefGoogle Scholar
Einaudi, G. & Rubini, F. 1986 Resistive instabilities in a flowing plasma: I. Inviscid case. Phys. Fluids 29, 2563.CrossRefGoogle Scholar
Eriksson, S. et al. 2009 Magnetic island formation between large-scale flow vortices at an undulating postnoon magnetopause for northward interplanetary magnetic field. J. Geophys. Res. 114, A00C17.Google Scholar
Eriksson, S. et al. 2016 Magnetospheric Multiscale observations of magnetic reconnection associated with Kelvin–Helmholtz waves. Geophys. Res. Lett. 43, 5606.Google Scholar
Faganello, M. et al. 2008a Competing mechanisms of plasma transport in inhomogeneous configurations with velocity shear: the solar–wind interaction with Earth’s magnetosphere. Phys. Rev. Lett. 100, 015001.Google Scholar
Faganello, M. et al. 2008b Numerical evidence of undriven, fast reconnection in the solar-wind interaction with Earth’s magnetosphere: formation of electromagnetic coherent structures. Phys. Rev. Lett. 101, 105001.Google Scholar
Faganello, M. et al. 2008c Time window for magnetic reconnection in plasma configurations with velocity shear. Phys. Rev. Lett. 101, 175003.Google Scholar
Faganello, M. et al. 2009 Being on time in magnetic reconnection. New J. Phys. 11, 063008.Google Scholar
Faganello, M. et al. 2010 Collisionless magnetic reconnection in the presence of a sheared velocity field. Phys. Plasmas 17, 062102.Google Scholar
Faganello, M. et al. 2012a Kelvin–Helmholtz instabilities at the Earth’s magnetopause: intrinsic 3D behavior of well-known instabilities in a complex magnetized system. In EPS/ICPP 2012 Conf. Proc., Special Issue, vol. 54, p. 124037. Plasma Phys. Control. Fusion.Google Scholar
Faganello, M. et al. 2012b Double mid-latitude dynamical reconnection at the magnetopause: an efficient mechanism allowing solar wind to enter the Earth’s magnetosphere. Europhys. Lett. 100, 69001.Google Scholar
Faganello, M. et al. 2014 Kelvin–Helmholtz vortices and double mid-latitude reconnection at the Earth’s magnetopause: comparison between observations and simulations. Europhys. Lett. 107, 19001.Google Scholar
Fairfield, D. H. et al. 2000 Geotail observations of the Kelvin–Helmholtz instability at the equatorial magnetotail boundary for parallel northward fields. J. Geophys. Res. 105, 21159.Google Scholar
Farrugia, C. J. et al. 1998 Charts of joint Kelvin–Helmholtz and Rayleigh–Taylor instabilites at the dayside magnetopause for strongly northward interplanetary magnetic field. J. Geophys. Res. 103, 6703.Google Scholar
Farrugia, C. J. et al. 2014 A vortical dawn flank boundary layer for near-radial IMF: wind observations on 24 October 2001. J. Geophys. Res. Space Physics 119, 4572.Google Scholar
Foullon, C. et al. 2008 Evolution of Kelvin–Helmholtz activity on the dusk flank magnetopause. J. Geophys. Res. 113, A11203.Google Scholar
Foullon, C. et al. 2011 Magnetic Kelvin–Helmholtz instability at the Sun. Astrophys. J. Lett. 729, L8.Google Scholar
Frank, A. et al. 1996 The magnetohydrodynamic Kelvin–Helmholtz instability: a two-dimensional numerical study. Astrophys. J. 460, 777.Google Scholar
Fu, S. Y. et al. 1995a Vortex-induced magnetic reconnection and single X line reconnection at the magnetopause. J. Geophys. Res. 100, 5657.Google Scholar
Fu, S. Y. et al. 1995b Simulation study on stochastic reconnection at the magnetopause. J. Geophys. Res. 100, 12001.Google Scholar
Fujimoto, M. & Terasawa, T. 1991 Ion inertia effect on the Kelvin–Helmholtz instability. J. Geophys. Res. 96, 15725.Google Scholar
Fujimoto, M. & Terasawa, T. 1994 Anomalous ion mixing within an MHD Kelvin–Helmholtz scale vortex. J. Geophys. Res. 99, 8601.Google Scholar
Fujimoto, M. & Terasawa, T. 1995 Anomalous ion mixing within an MHD Kelvin–Helmholtz scale vortex 2. Effects of inhomogeneity. J. Geophys. Res. 100, 12025.Google Scholar
Fujimoto, M. et al. 1998 Plasma entry from the flanks of the near-Earth magnetotail: geotail observations. J. Geophys. Res. 103, 4391.Google Scholar
Fujita, S. et al. 1996 MHD waves generated by the Kelvin–Helmholtz instability in a nonuniform magnetosphere. J. Geophys. Res. 101, 27317.Google Scholar
Furth, H. P. et al. 1963 Finite-resistivity instability of a sheet pinch. Phys. Fluids 6, 459.Google Scholar
Fuselier, S. A. et al. 2014 Magnetic field topology for northward IMF reconnection: ion observations. J. Geophys. Res. Space Physics 119, 9051.CrossRefGoogle Scholar
Galinsky, V. L. & Sonnerup, B. U. Ö. 1994 Dynamics of shear velocity layer with bent magnetic field lines. Geophys. Res. Lett. 21, 2247.Google Scholar
Ganguli, G. et al. 1988 Kinetic theory for electrostatic waves due to transverse velocity shears. Phys. Fluids 31, 823.Google Scholar
Garbet, X. et al. 1999 Kelvin–Helmholtz instability in tokamak edge plasmas. Phys. Plasmas 6, 3955.Google Scholar
Gershman, D. J. et al. 2015 MESSENGER observations of multiscale Kelvin–Helmholtz vortices at Mercury. J. Geophys. Res. Space Physics 120, 4354.Google Scholar
Gosling, J. T. et al. 1991 Observations of reconnection of interplanetary and lobe magnetic field lines at the high-latitude magnetopause. J. Geophys. Res. 96, 14097.Google Scholar
Gratton, F. T. et al. 2003 The stability of the pristine magnetopause. Planet. Space Sci. 51, 769.Google Scholar
Gratton, F. T. et al. 2004 Concerning a problem on the Kelvin–Helmholtz stability of the thin magnetopause. J. Geophys. Res. 109, A04211.Google Scholar
Grad, H. & Rubin, H. 1958 Hydromagnetic equilibria and force-free fields. In Proc. 2nd UN Conf. on the Peaceful Uses of Atomic Energy, vol. 31, p. 190. IAEA.Google Scholar
Guo, X. C. et al. 2010 Global MHD simulation of the Kelvin–Helmholtz instability at the magnetopause for northward interplanetary magnetic field. J. Geophys. Res. 115, A10218.Google Scholar
Hamlin, N. D. & Newman, W. I. 2013 Role of the Kelvin–Helmholtz instability in the evolution of magnetized relativistic sheared plasma flows. Phys. Rev. E 87, 043101.Google Scholar
Hans, H. K. 1968 Larmor radius and collisional effects on the combined Taylor and Kelvin instabilities in a composite medium. Nucl. Fusion 8, 89.Google Scholar
Hasegawa, H. et al. 2003 Geotail observations of the dayside outer boundary region: interplanetary magnetic field control and dawn–dusk asymmetry. J. Geophys. Res. 108, 1163.Google Scholar
Hasegawa, H. et al. 2004 Transport of solar wind into Earth’s magnetosphere through rolled-up Kelvin–Helmholtz vortices. Nature 430, 755.Google Scholar
Hasegawa, H. et al. 2006 Single-spacecraft detection of rolled-up Kelvin–Helmholtz vortices at the flank magnetopause. J. Geophys. Res. 111, A09203.Google Scholar
Hasegawa, H. et al. 2007 Recovery of streamlines in the flank low-latitude boundary layer. J. Geophys. Res. 112, A04213.Google Scholar
Hasegawa, H. et al. 2009 Kelvin–Helmholtz waves at the Earth’s magnetopause: multiscale development and associated reconnection. J. Geophys. Res. 114, A12207.Google Scholar
Hasegawa, H. 2012 Structure and dynamics of the magnetopause and its boundary layers. Monogr. Environ. Earth Planets 1, 71.Google Scholar
Hashimoto, C. & Fujimoto, M. 2006 Kelvin–Helmholtz instability in an unstable layer of finite-thickness. Adv. Space Res. 37, 527.Google Scholar
Hedstrom, G. W. 1979 Nonreflecting boundary conditions for nonlinear hyperbolic systems. J. Comput. Phys. 30, 222.Google Scholar
Harding, E. C. et al. 2009 Observation of a Kelvin–Helmholtz instability in a high-energy-density plasma on the Omega laser. Phys. Rev. Lett. 103, 045005.Google Scholar
Hwang, K.-J. et al. 2011 Kelvin–Helmholtz waves under southward interplanetary magnetic field. J. Geophys. Res. 116, A08210.Google Scholar
Hwang, K.-J. et al. 2012 The first in situ observation of Kelvin–Helmholtz waves at high-latitude magnetopause during strongly dawnward interplanetary magnetic field conditions. J. Geophys. Res. 117, A08233.Google Scholar
Henri, P. et al. 2012 Magnetised Kelvin–Helmholtz instability in the intermediate regime between subsonic and supersonic regimes. Phys. Plasmas 19, 072908.Google Scholar
Henri, P. et al. 2013 Nonlinear evolution of the magnetized Kelvin–Helmholtz instability: from fluid to kinetic modeling. Phys. Plasmas 20, 102118.Google Scholar
Hofmann, I. 1975 Resistive tearing modes in a sheet pinch with shear flow. Plasma Phys. 17, 143.Google Scholar
Huba, J. D. 1994 Hall dynamics of the Kelvin–Helmholtz instability. Phys. Rev. Lett. 72, 2033.Google Scholar
Huba, J. D. 1996 The Kelvin–Helmholtz instability: finite Larmor radius magnetohydrodynamics. Geophys. Res. Lett. 23, 2907.Google Scholar
Hurricane, O. A. et al. 2009 A high energy density shock driven Kelvin–Helmholtz shear layer experiment. Phys. Plasmas 16, 056305.Google Scholar
Hurricane, O. A. et al. 2012 Validation of a turbulent Kelvin–Helmholtz shear layer model using a high-energy-density OMEGA laser experiment. Phys. Rev. Lett. 109, 155004.Google Scholar
Johnson, J. R. et al. 2001a Signatures of mode conversion and Kinetic Alfvén waves at the magnetopause. Geophys. Res. Lett. 28, 227.Google Scholar
Johnson, J. R. & Chen, C. Z. 2001b Stochastic ion heating at the magnetopause due to kinetic Alfvén waves. Geophys. Res. Lett. 28, 4421.Google Scholar
Johnson, J. R. & Wing, S. 2009 Northward interplanetary magnetic field plasma sheet entropies. J. Geophys. Res. 114, A00D08.Google Scholar
Johnson, J. R. et al. 2014 Kelvin Helmholtz instability in planetary magnetospheres. Space Sci. Rev. 184, 1.CrossRefGoogle Scholar
Jones, T. W. et al. 1997 The MHD Kelvin–Helmholtz instability II: the roles of weak and oblique fields in planar flows. Astrophys. J. 482, 230.Google Scholar
Karimabadi, H. et al. 2013 Coherent structures, intermittent turbulence, and dissipation in high- temperature plasmas. Phys. Plasmas 20, 012303.Google Scholar
Kavosi, S. & Raeder, J. 2015 Ubiquity of Kelvin–Helmholtz waves at Earth’s magnetopause. Nature Commun. 6, 7019.Google Scholar
Keppens, R. et al. 1999 Growth and saturation of the Kelvin–Helmholtz instability with parallel and anti-parallel magnetic fields. J. Plasma Phys. 61, 1.Google Scholar
Kivelson, M. G. et al. 1998 Ganymede’s magnetosphere: magnetometer overview. J. Geophys. Res. 103, 19963.Google Scholar
Knoll, D. A. & Chacón, L. 2002 Magnetic reconnection in the two-dimensional Kelvin–Helmholtz instability. Phys. Rev. Lett. 88, 215003.Google Scholar
Knoll, D. A. & Brackbill, J. U. 2002 The Kelvin–Helmholtz instability, differential rotation, and three-dimensional, localized, magnetic reconnection. Phys. Plasmas 9, 3775.Google Scholar
Kobayashi, Y. et al. 2008 The structure of Kelvin–Helmholtz vortices with super-sonic flow. Adv. Space Res. 41, 1325.Google Scholar
Labelle, J. & Treumann, R. A. 1988 Plasma waves at the dayside magnetopause. Space Sci. Rev. 47, 175.Google Scholar
Lai, S. H. & Lyu, L. H. 2006 A simulation and theoretical study of energy transport in the event of MHD Kelvin–Helmholtz instability. J. Geophys. Res. 115, A10215.Google Scholar
Landi, S. et al. 2005 Alfvén waves and shock wave formation at an X-point magnetic field configuration. Astrophys. J. 624, 392.Google Scholar
Lapenta, G. & Knoll, D. A. 2003 Reconnection in solar corona: role of the Kelvin–Helmholtz instability. Solar Phys. 214, 107.Google Scholar
Lavraud, B. et al. 2005 Characteristics of the magnetosheath electron boundary layer under northward interplanetary magnetic field: implications for high-latitude reconnection. J. Geophys. Res. 110, A06209.Google Scholar
Lavraud, B. et al. 2006 Evidence for newly closed magnetosheath field lines at the dayside magnetopause under northward IMF. J. Geophys. Res. 111, A05211.Google Scholar
Le, G. C. et al. 1994 Structure of the magnetopause for low Mach number and strongly northward interplanetary magnetic field. J. Geophys. Res. 99, 23723.Google Scholar
Li, L.-X. & Narayan, R. 2004 Quasi-periodic oscillations from Rayleigh–Taylor and Kelvin–Helmholtz instability at the disk-magnetosphere interface. Astrophys. J. 601, 414.Google Scholar
Li, W. et al. 2013 Global features of Kelvin–Helmholtz waves at the magnetopause for northward interplanetary magnetic field. J. Geophys. Res. 118, 1.Google Scholar
Lin, D. et al. 2014 Properties of Kelvin–Helmholtz waves at the magnetopause under northward interplanetary magnetic field: statistical study. J. Geophys. Res. 119, 7485.Google Scholar
Liu, Z. X. & Hu, Y. D. 1988 Local magnetic reconnection caused by vortices in the flow field. Geophys. Res. Lett. 15, 752.Google Scholar
Lovelace, R. V. E. et al. 2010 Kelvin–Helmholtz instability of the magnetopause of disc-accreting stars. Mon. Not. R. Astron. Soc. 402, 2575.Google Scholar
Ma, X. et al. 2014a Interaction of magnetic reconnection and Kelvin–Helmholtz modes for large magnetic shear 1 Kelvin–Helmholtz trigger. J. Geophys. Res. Space Physics 119, 781.Google Scholar
Ma, X. et al. 2014b Interaction of magnetic reconnection and Kelvin–Helmholtz modes for large magnetic shear: 2. Reconnection trigger. J. Geophys. Res. Space Physics 119, 808.Google Scholar
Mann, I. R. et al. 1999 Excitation of magnetospheric waveguide modes by magnetosheath flows. J. Geophys. Res. 104, 333.Google Scholar
Manuel, J. R. & Samson, J. C. 1993 The spatial development of the low-latitude boundary layer. J. Geophys. Res. 98, 17367.Google Scholar
Matsumoto, Y. & Hoshino, M. 2004 Onset of turbulence induced by a Kelvin–Helmholtz vortex. Geophys. Res. Lett. 31, L02807.Google Scholar
Matsumoto, Y. & Hoshino, M. 2006 Turbulent mixing and transport of collisionless plasmas across a stratified velocity shear layer. J. Geophys. Res. 111, A05213.Google Scholar
Matsumoto, Y. & Seki, K. 2007 The secondary instability initiated by the three-dimensional nonlinear evolution of the Kelvin–Helmholtz instability. J. Geophys. Res. 112, A06223.Google Scholar
Matsumoto, Y. & Seki, K. 2010 Formation of a broad plasma turbulent layer by forward and inverse energy cascades of the Kelvin–Helmholtz instability. J. Geophys. Res. 115, A10231.Google Scholar
McFadden, J. P. et al. 2008 Structure of the subsolar magnetopause regions during northward. Geophys. Res. Lett. 35, L17S09.Google Scholar
Merkin, V. G. et al. 2013 Kelvin–Helmholtz instability of the magnetospheric boundary in a three-dimensional global MHD simulation during northward IMF conditions. J. Geophys. Res. 118, 5478.Google Scholar
Michalke, A. 1964 On the inviscid instability of the hyperbolic tangent velocity profile. J. Fluid Mech. 19, 543.Google Scholar
Mills, K. J. et al. 2000 Kelvin–Helmholtz instability on the magnetospheric flanks: an absolute and convective instability approach. J. Geophys. Res. 105, 27685.Google Scholar
Mills, K. J. & Wright, A. N. 1999 Azimuthal phase speeds of field line resonances driven by Kelvin–Helmholtz. J. Geophys. Res. 104, 22667.Google Scholar
Min, K. W. & Lee, D. Y. 1996 Simulation of Kelvin–Helmholtz instability in resistive plasmas. Geophys. Res. Lett. 23, 3667.Google Scholar
Mitchell, D. G. et al. 1987 An extended study of the low-latitude boundary layer on the dawn and dusk flanks of the magnetosphere. J. Geophys. Res. 9, 7394.Google Scholar
Miura, A. 1982 Nonlinear evolution of the magnetohydrodynamic Kelvin–Helmholtz instability. Phys. Rev. Lett. 19, 779.Google Scholar
Miura, A. 1984 Anomalous transport by magnetohydrodynamic Kelvin–Helmholtz instabilities in the solar wind-kagnetosphere interaction. J. Geophys. Res. 89, 801.Google Scholar
Miura, A. 1987 Simulation of Kelvin–Helmholtz instability at the magnetospheric boundary. J. Geophys. Res. 92, 3195.Google Scholar
Miura, A. 1990 Kelvin–Helmholtz instability for supersonic shear flow at the magnetospheric boundary. Geophys. Res. Lett. 17, 749.Google Scholar
Miura, A. 1992 Kelvin–Helmholtz instability at the magnetospheric boundary: dependence on the magnetosheath sonic Mach number. J. Geophys. Res. 97, 10655.Google Scholar
Miura, A. 1997 Compressible magnetohydrodynamic Kelvin–Helmholtz instability with vortex pairing in the two-dimensional transverse configuration. Phys. Plasmas 4, 2871.Google Scholar
Miura, A. 1999a Self-organization in the two-dimensional magnetohydrodynamic transverse Kelvin–Helmholtz instability. J. Geophys. Res. 104, 395.Google Scholar
Miura, A. 1999b A quantitative test of the self-organization hypotesis of the magnetopause Kelvin–Helmholtz instability as an inverse problem. Geophys. Res. Lett. 26, 409.Google Scholar
Miura, A. & Pritchett, P. L. 1982 Nonlocal stability analysis of the MHD Kelvin–Helmholtz instability in a compressible plasma. J. Geophys. Res. 87, 7431.Google Scholar
Moser, A. L. & Bellan, P. M. 2012 Magnetic reconnection from a multiscale instability cascade. Nature 482, 379.Google Scholar
Nagano, H. 1978 Effect of finite ion Larmor radius on the Kelvin–Helmholtz instability. J. Plasma Phys. 20, 149.Google Scholar
Nagano, H. 1979 Effect of finite ion Larmor on the Kelvin–Helmholtz instability at the magnetopause. Planet. Space Sci. 27, 881.Google Scholar
Nakamura, T. K. M. et al. 2004 Decay of MHD-scale Kelvin–Helmholtz vortices mediated by parasitic electron dynamics. Phys. Rev. Lett. 92, 145001.Google Scholar
Nakamura, T. K. M. & Fujimoto, M. 2005 Magnetic reconnection within rolled-up MHD-scale Kelvin–Helmholtz vortices: two-fluid simulations including finite electron inertial effects. Geophys. Res. Lett. 32, 21102.Google Scholar
Nakamura, T. K. M. & Fujimoto, M. 2006 Magnetic reconnection within MHD-scale Kelvin–Helmholtz vortices triggered by electron inertial effects. Adv. Space Res. 37, 522.Google Scholar
Nakamura, T. K. M. et al. 2006 Magnetic reconnection induced by weak Kelvin–Helmholtz instability and the formation of the low-latitude boundary layer. Geophys. Res. Lett. 33, L14106.Google Scholar
Nakamura, T. K. M. & Fujimoto, M. 2008 Magnetic effects on the coalescence of Kelvin–Helmholtz vortices. Phys. Rev. Lett. 101, 165002.Google Scholar
Nakamura, T. K. M. et al. 2010 Kinetic effects on the Kelvin–Helmholtz instability in ion-to-magnetohydrodynamic scale transverse velocity shear layers: particle simulations. Phys. Plasmas 17, 042119.Google Scholar
Nakamura, T. K. M. et al. 2011 Evolution of an MHD-scale Kelvin–Helmholtz vortex accompanied by magnetic reconnection: two–dimensional particle simulations. J. Geophys. Res. 116, A03227.Google Scholar
Nakamura, T. K. M. et al. 2013 Three-dimensional dynamics of vortex-induced reconnection and comparison with THEMIS observations. J. Geophys. Res. Space Physics 118, 5742.Google Scholar
Nakamura, T. K. M. & Daughton, W. 2014 Turbulent plasma transport across the Earth’s low-latitude boundary layer. Geophys. Res. Lett. 41, 8704.Google Scholar
Nikutowski, B. et al. 2002 Equator-S or reconnection observation coupled to surface waves. Adv. Space Res. 29, 1129.Google Scholar
Nishino, M. N. et al. 2011 A case study of Kelvin–Helmholtz vortices on both flanks of the Earth’s magnetotail. Planet. Space Sci. 59, 502.Google Scholar
Nykyri, K. & Otto, A. 2001 Plasma transport at the magnetospheric boundary due to reconnection in Kelvin–Helmholtz vortices. Geophys. Res. Lett. 28, 3565.Google Scholar
Nykyri, K. & Otto, A. 2004 Influence of the Hall term on KH instability and reconnection inside KH vortices. Ann. Geophys. 22, 935.Google Scholar
Nykyri, K. et al. 2006 Cluster observations of reconnection due to the Kelvin–Helmholtz instability at the dawnside magnetospheric flank. Ann. Geophys. 24, 2619.Google Scholar
Nykyri, K. 2013 Impact of MHD shock physics on magnetosheath asymmetry and Kelvin–Helmholtz instability. J. Geophys. Res. 118, 5068.Google Scholar
Øieroset, M. et al. 2005 Global cooling and densification of the plasma sheet during an extended period of purely northward IMF on October 22–24, 2003. Geophys. Res. Lett. 32, L12S07.CrossRefGoogle Scholar
Ong, R. S. B. & Roderick, N. 1972 On the Kelvin–Helmholtz instability of the Earth’s magnetopause. Planet. Space Sci. 20, 1.Google Scholar
Onsager, T. G. et al. 2001 Reconnection at the high-latitude magnetopause during northward interplanetary magnetic field conditions. J. Geophys. Res. 106, 25467.Google Scholar
Otto, A. & Fairfield, D. H. 2000 Kelvin–Helmholtz instability at the magnetotail boundary: MHD simulation and comparison with Geotail observation. J. Geophys. Res. 105, 21175.Google Scholar
Palermo, F. et al. 2011a Compressible Kelvin–Helmholtz instability in super-magnetosonic regimes. J. Geophys. Res. 116, A04223.Google Scholar
Palermo, F. et al. 2011b Kelvin–Helmholtz vortices and secondary instabilities in super-magnetosonic regimes. Ann. Geophys. 29, 1169.Google Scholar
Paral, J. & Rankin, R. 2013 Dawn–dusk asymmetry in the Kelvin–Helmholtz instability at Mercury. Nature Commun. 4, 1645.Google Scholar
Perez, J. C. et al. 2006 Study of strong cross-field sheared flow with the vorticity probe in the large plasma device. Phys. Plasmas 13, 055701.Google Scholar
Pritchett, P. L. & Coroniti, F. V. 1984 The collisionless macroscopic Kelvin–Helmholtz instability. J. Geophys. Res. 89, 168.Google Scholar
Pu, Z.-Y. 1989 Kelvin–Helmholtz instability in collisionless space plasmas. Phys. Fluids B 1, 440.Google Scholar
Pu, Z.-Y. et al. 1983 Kelvin–Helmholtz instability at the magnetopause: energy flux into the magnetosphere. J. Geophys. Res. 88, 853.Google Scholar
Pu, Z. Y. & Fu, S. Y. 1997 Transient magnetic reconnection at the magnetopause in the presence of a velocity shear. Plasma Phys. Control. Fusion 39, A251.Google Scholar
Raman, K. S. et al. 2012 Three-dimensional modeling and analysis of a high energy density Kelvin–Helmholtz experiment. Phys. Plasmas 19, 092112.Google Scholar
Rayleigh, J. W. S. 1880 On the stability or instability of certain fluid equations. Proc. Lond. Math. Soc. 9, 5770.Google Scholar
Robinson, A. C. & Saffman, P. G. 1982 Three-dimensional stability of vortex arrays. J. Fluid Mech. 125, 411.Google Scholar
Rosenbluth, M. N. & Longmire, C. L. 1957 Stability of plasmas confined by magnetic fields. Ann. Phys. 1, 120.Google Scholar
Rossi, C. et al. 2015 Two-fluid numerical simulations of turbulence inside Kelvin–Helmholtz vortices: intermittency and reconnecting current sheets. Phys. Plasmas 22, 122303.Google Scholar
Scott, B. D. et al. 1988 Saturation of Kelvin–Helmholtz fluctuations in a sheared magnetic field. Phys. Fluids 31, 1481.Google Scholar
Sen, A. K. 1963 Stability of hydromagnetic Kelvin–Helmholtz discontinuity. Phys. Fluids 6, 1154.Google Scholar
Sen, A. K. 1964 Effect of compressibility on Kelvin–Helmholtz instability in a plasma. Phys. Fluids 7, 1293.Google Scholar
Sen, A. K. 1965 Stability of the magnetospheric boundary. Planet. Space Sci. 13, 131.Google Scholar
Shafranov, V. D. 1966 Plasma equilibrium in a magnetic field. In Review of Plasma Physics, vol. 2, p. 103. Consultants Bureau.Google Scholar
Shay, M. A. et al. 1998 Structure of the dissipation region during collisionless magnetic reconnection. J. Geophys. Res. 103, 9165.Google Scholar
Smyth, W. D. 2003 Secondary Kelvin–Helmholtz instability in weakly stratified shear flow. J. Fluid Mech. 497, 67.Google Scholar
Sonnerup, B. U. Ö. 1980 Theory of the low-latitude boundary layer. J. Geophys. Res. 85, 2017.Google Scholar
Sonnerup, B. U. Ö. et al. 2006 Grad–Shafranov reconstruction: an overview. J. Geophys. Res. 111, A09204.Google Scholar
Sundberg, T. et al. 2012 MESSENGER orbital observations of large-amplitude Kelvin–Helmholtz waves at Mercury’s magnetopause. J. Geophys. Res. 117, A04216.Google Scholar
Southwood, D. J. 1968 The hydromagnetic stability of the magnetospheric boundary. Planet. Space Sci. 16, 587.Google Scholar
Spreiter, J. R. et al. 1966 Hydromagnetic flow around the magnetosphere. Planet. Space Sci. 14, 223.Google Scholar
Sugiyama, T. & Kusano, K. 2007 Multi-scale plasma simulation by the interlocking of magnetohydrodynamic model and particle-in-cell kinetic model. J. Comput. Phys. 227, 1340.Google Scholar
Sun, X. et al. 2008 Transition of MHD kink-stability properties between line-tied and non-line-tied boundary conditions. Phys. Rev. Lett. 100, 205004.Google Scholar
Song, P. & Russel, C. T. 1992 Model of the formation of the low-latitude boundary layer for strongly northward interplanetary magnetic field. J. Geophys. Res. 97, 1411.Google Scholar
Takagi, K. et al. 2006 Kelvin–Helmholtz instability in a magnetotail flank-like geometry: three-dimensional MHD simulations. J. Geophys. Res. 111, A08202.Google Scholar
Taylor, M. G. G. T. et al. 2008 The plasma sheet and boundary layers under northward IMF: a multi-point and multi-instrument perspective. Adv. Space Res. 41, 1619.Google Scholar
Taylor, M. G. G. T. et al. 2012 Spatial distribution of rolled up Kelvin–Helmholtz vortices at Earth’s dayside and flank magnetopause. Ann. Geophys. 30, 1025.Google Scholar
Tenerani, A. et al. 2011 Nonlinear vortex dynamics in an inhomogeneous magnetized plasma with a sheared velocity field. Plasma Phys. Control. Fusion 53, 015003.Google Scholar
Terasawa, T. et al. 1992 Ion mixing within a Kelvin–Helmholtz vortex in a collisionless plasma. Phys. Rev. Lett. 68, 2778.Google Scholar
Terasawa, T. et al. 1997 Solar wind control of density and temperature in the near-Earth plasma sheet: WIND/GEOTAIL collaboration. Geophys. Res. Lett. 24, 935.Google Scholar
Thiffeault, J.-L. 2005 Measuring topological chaos. Phys. Rev. Lett. 94, 084502.Google Scholar
Thomas, V. A. & Winske, D. 1993 Kinetic simulations of the Kelvin–Helmholtz instability at the magnetopause. J. Geophys. Res. 98, 11425.Google Scholar
Thompson, K. W. 1990 Time-dependent boundary conditions for hyperbolic systems. J. Comput. Phys. 89, 439461.Google Scholar
Umeda, T. et al. 2010 Full electromagnetic Vlasov code simulation of the Kelvin–Helmholtz instability. Phys. Plasmas 17, 052311.Google Scholar
Umeda, T. et al. 2014 Ion kinetic effects on nonlinear processes of the Kelvin–Helmholtz instability. Plasma Phys. Control. Fusion 56, 075006.Google Scholar
Usami, S. et al. 2012 Simulation of plasma flow injection with multi-hierarchy model aiming magnetic reconnection studies. Comm. Comput. Phys. 11, 1006.Google Scholar
Usami, S. et al. 2013 Development of multi-hierarchy simulation model with non-uniform space grids for collisionless driven reconnection. Phys. Plasmas 20, 061208.Google Scholar
Uzdensky, D. A. & Kulsrud, R. M. 2006 Physical origin of the quadrupole out-of-plane magnetic field in Hall-magnetohydrodynamic reconnection. Phys. Plasmas 13, 062305.Google Scholar
Vekstein, G. & Bian, N. H. 2006 Hall assisted forced magnetic reconnection. Phys. Plasmas 13, 122105.Google Scholar
Velikhov, E. P. 1959 Stability of an ideally conducting liquid flowing between cylinders rotating in a magnetic field. Sov. Phys. JETP 9, 995.Google Scholar
Vernisse, Y. et al. 2016 Signatures of complex magnetic topologies from multiple reconnection sites induced by Kelvin–Helmholtz instability. J. Geophys. Res. Space Physics 121, 9926.Google Scholar
Walker, A. D. M. 1981 The Kelvin–Helmholtz instability in the low-latitude boundary layer. Planet. Space Sci. 29, 1119.Google Scholar
Wan, M. et al. 2012 Intermittent dissipation at kinetic scales in collisionless plasma turbulence. Phys. Rev. Lett. 109, 195001.Google Scholar
Wedemeyer-Böhm, S. et al. 2012 Magnetic tornadoes as energy channels into the solar corona. Nature 486, 505.Google Scholar
Wei, C. Q. et al. 1990 A simulation study of the vortex structure in the low-latitude boundary layer. J. Geophys. Res. 95, 20793.Google Scholar
Wei, C. Q. & Lee, L. C. 1993 Coupling of magnetopause-boundary layer to the polar ionosphere. J. Geophys. Res. 98, 5707.Google Scholar
Wesson, J. A. 1990 Sawtooth reconnection. Nucl. Fusion 30, 2545.Google Scholar
Wilber, M. & Winglee, R. M. 1995 Dawn-dusk asymmetries in the low-latitude boundary layer arising from the Kelvin–Helmholtz instability: a particle simulation. J. Geophys. Res. 100, 1883.Google Scholar
Winant, C. D. & Browand, F. K. 1974 Vortex pairing: the mechanism of turbulent mixing-layer growth at moderate Reynolds number. J. Fluid Mech. 63, 237.Google Scholar
Wing, S. et al. 2005 Dawn-dusk asymmetries, ion spectra, and sources in the northward interplanetary magnetic field plasma sheet. J. Geophys. Res. 110, A08205.Google Scholar
Wing, S. et al. 2006 Timescale for the formation of the cold-dense plasma sheet: a case study. Geophys. Res. Lett. 33, L23106.Google Scholar
Wright, A. N. et al. 2000 The absolute and convective instability magnetospheric flanks. J. Geophys. Res. 105, 385.Google Scholar
Wu, C. C. 1986 Kelvin–Helmholtz instability at the magnetopause boundary. J. Geophys. Res. 91, 3042.Google Scholar
Yan, G. Q. et al. 2014 Kelvin–Helmholtz vortices observed by THEMIS at the duskside of the magnetopause under southward interplanetary magnetic field. Geophys. Res. Lett. 41, 4427.Google Scholar