Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-19T07:38:33.417Z Has data issue: false hasContentIssue false

Jeans-Alfvén instability in quantum dusty magnetoplasmas

Published online by Cambridge University Press:  20 February 2017

M. Jamil*
Affiliation:
Department of Physics, COMSATS Institute of Information Technology, Lahore-54000, Pakistan
A. Rasheed
Affiliation:
Department of Physics, Govt. College University, Faisalabad-38000, Pakistan
M. Amir
Affiliation:
Department of Physics, COMSATS Institute of Information Technology, Lahore-54000, Pakistan
G. Abbas
Affiliation:
Department of Physics, GC University, Lahore-54000, Pakistan
Young-Dae Jung
Affiliation:
Department of Applied Physics and Department of Bionanotechnology, Hanyang University, Ansan, Kyunggi-Do 15588, South Korea Department of Electrical and Computer Engineering, MC 0407, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0407, USA
*
Email address for correspondence: [email protected]

Abstract

The Jeans instability is examined in quantum dusty magnetoplasmas due to low-frequency magnetosonic perturbations. The fluid model consisting of the momentum balance equation for quantum plasmas, Poisson’s equation for the gravitational potential and Maxwell’s equations for electromagnetic magnetosonic perturbations is solved. The numerical analysis elaborates the significant contribution of magnetic field, electron number density and variable dust mass to the Jeans instability.

Type
Research Article
Copyright
© Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adlam, J. H. & Allen, J. E. 1958 Proceedings of the 2nd U.N. Intern. Con. on Peaceful Uses of Atomic Energy. pp. 221224.Google Scholar
Field, G. B. 1965 Thermal instability. Astrophys. J. 142, 531 doi:10.1086/148317.Google Scholar
Gardner, C. S., Goertzel, H., Grad, H., Morawetz, C. S., Rose, M. H. & Rubins, H. 1958 Proceedings of the 2nd U.N. Intern. Conf. of Peaceful Uses of Atomic Energy, vol. 31, pp. 230237.Google Scholar
Jamil, M., Mir, Z., Asif, M. & Salimullah, M. 2014 Jeans stability in collisional quantum dusty magnetoplasmas. Phys. Plasmas 21, 092111.Google Scholar
Kennel, C. F. & Sagdeev, R. Z. 1967 Collisionless shock waves in high $\unicode[STIX]{x1D6FD}$ plasmas. J. Geophys. Res. 72 (13), 3327.Google Scholar
Nakariakov, V. M., Roberts, B. & Murawshi, K. 1997 Alfvén waves phase mixing as a source of fast magnetosonic waves. Solar Phys. 175, 93.CrossRefGoogle Scholar
Pensia, R. K., Prajapat, V., Kumar, V. & Patidar, A. K. 2011 Effect of electron inertia and permeability on jeans instability of viscous uniformly magnetized gaseous plasma in the presence of suspended particles. Adv. Studies Theor. Phys. 5 (15), 743.Google Scholar
Prajapati, R. P. & Chhajlani, R. K. 2010 Effect of Hall current on the Jeans instability of magnetized viscous quantum plasma. Phys. Scr. 82, 055003.Google Scholar
Prajapati, R. P. & Chhajlani, R. K. 2011 Effect of magnetic field on Jeans instability of quantum dusty plasma: application in white dwarf star. Acta Tech. 56, T414.Google Scholar
Prajapati, R. P., Sharma, P. K., Sanghvi, R. K. & Chhajlani, R. K. 2012 Jeans instability of self-gravitating magnetized strongly coupled plasma. J. Phys.: Conf. Ser. 365, 012040.Google Scholar
Ren, H., Wu, Z., Cao, J. & Chu, P. K. 2009 Jeans instability in quantum magnetoplasma with resistive effect. Phys. Plasmas 16, 072101.Google Scholar
Sagdeev, R. Z. 1958 Non-linear motions of a rarefied plasma in a magnetic field. In Plasma Physics and the Problem of Controlled Thermonuclear Research (ed. Artsimovich, L. A.), vol. 5, pp. 454460. Pergamon.Google Scholar
Salahuddin, M. & Shah, H. A. 2004 Stability of self gravitating dusty plasma. Phys. Scr. 69, 126.Google Scholar
Salimullah, M., Jamil, M., Shah, H. A. & Murtaza, G. 2009 Jeans instability in a quantum dusty magnetoplasma. Phys. Plasmas 16, 014502.Google Scholar
Salimullah, M., Shukla, P. K., Ghosh, S. K., Nitta, H. & Hayashi, Y. 2003 Electron-phonon coupling effect on wakefield in piezoelectric semiconductor. J. Phys. D: Appl. Phys. 36, 958.CrossRefGoogle Scholar
Schunk, R. & Nagy, A. 2009 Ionospheres: Physics, Plasma Physics and Chemistry. Cambridge University Press.CrossRefGoogle Scholar
Shaikh, S., Khan, A. & Bhatia, P. K. 2008 Jeans gravitational instability of a thermally conducting plasma. Phys. Lett. A 372 (9), 1451.CrossRefGoogle Scholar
Sharma, P., Jain, Sh. & Prajapati, R. P. 2016 Effect of Fermi pressure and bohm potential on jeans instability of quantum dusty plasma in presence of polarization force. IEEE Trans. Plasma Sci. 44 (5), 862.Google Scholar
Shukla, P. K. & Stenflo, L. 2006 Jeans instability in a quantum dusty magnetoplasma. Phys. Lett. A 355, 378.Google Scholar
Tsintsadze, N. L., Chaudhary, R., Shah, H. A. & Murtaza, G. 2008 Jeans instability in a magneto-radiative dusty plasma. J. Plasma Phys. 74, 847.CrossRefGoogle Scholar
Verheest, F., Meuris, P., Mace, R. L. & Hellberg, M. A. 1997 Alfvén-Jeans and magnetosonic modes in multispecies self-gravitating dusty plasmas. Astrophys. Space Sci. 254, 253.CrossRefGoogle Scholar