Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-26T00:45:17.207Z Has data issue: false hasContentIssue false

Fusion yield: Guderley model and Tsallis statistics

Published online by Cambridge University Press:  04 October 2010

H. J. HAUBOLD
Affiliation:
Office for Outer Space Affairs, United Nations, Vienna International Centre, P.O. Box 500, A-1400 Vienna, Austria ([email protected]) Centre for Mathematical Sciences, Pala Campus, Arunapuram P.O., Pala, Kerala 686 574, India
D. KUMAR
Affiliation:
Centre for Mathematical Sciences, Pala Campus, Arunapuram P.O., Pala, Kerala 686 574, India

Abstract

The reaction rate probability integral is extended from Maxwell–Boltzmann approach to a more general approach by using the pathway model introduced by Mathai in 2005 (A pathway to matrix-variate gamma and normal densities. Linear Algebr. Appl.396, 317–328). The extended thermonuclear reaction rate is obtained in the closed form via a Meijer's G-function and the so-obtained G-function is represented as a solution of a homogeneous linear differential equation. A physical model for the hydrodynamical process in a fusion plasma-compressed and laser-driven spherical shock wave is used for evaluating the fusion energy integral by integrating the extended thermonuclear reaction rate integral over the temperature. The result obtained is compared with the standard fusion yield obtained by Haubold and John in 1981 (Analytical representation of the thermonuclear reaction rate and fusion energy production in a spherical plasma shock wave. Plasma Phys.23, 399–411). An interpretation for the pathway parameter is also given.

Type
Papers
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Atzeni, S. and Meyer-Ter-Vehn, J. 2009 The Physics of Inertial Fusion: Beam Plasma Interaction, Hydrodynamics, Hot Dense Matter (International Series of Monographs on Physics). Oxford, UK: Oxford University Press.Google Scholar
[2]Bogoyavlensky, O. I. 1985 Methods in the Qualitative Theory of Dynamical Systems in Astrophysics and Gas Dynamics (Springer Series in Soviet Mathematics). Berlin, Germany: Springer.Google Scholar
[3]Brueckner, K. A. and Jorna, S. 1974 Laser-driven fusion. Rev. Mod. Phys. 46 (2), 325367.CrossRefGoogle Scholar
[4]Coraddu, M., Kaniadakis, G., Lavagno, A., Lissia, M., Mezzorani, G. and Quarati, P. 1999 Thermal distributions in stellar plasmas, nuclear reactions and solar neutrinos. Braz. J. Phys. 29, 153168.Google Scholar
[5]Daiber, J. W., Heritzberg, A. and Wittliff, C. E. 1966 Laser-generated implosions. Phys. Fluids 9, 617619.Google Scholar
[6]Davis, R Jr., 2003 A half-century with solar neutrinos. Rev. Mod. Phys. 75, 985994.Google Scholar
[7]Degl'Innocenti, Fiorentini G., Lissia, M., Quarati, P. and Ricci, B. 1998 Helioseismology can test the Maxwell–Boltzmann distribution. Phys. Lett. B 441, 291298.Google Scholar
[8]Erdélyi, A., Magnus, W., Oberhettinger, F. and Tricomi, F. G. 1953 Higher Transcendental Functions, Vol. I. New York: McGraw-Hill; Reprinted: 1981 Melbourne, Australia: Krieger.Google Scholar
[9]Fowler, W. A. 1984 Experimental and theoretical nuclear astrophysics: The quest for the origin of the elements. Rev. Mod. Phys. 56, 149179.Google Scholar
[10]Fowler, W. A., Caughlan, G. R. and Zimmerman, B. A. 1967 Thermonuclear rection rates. Annu. Rev. Astron. Astrophys. 5, 525570.CrossRefGoogle Scholar
[11]Grandpierre, A. 2010 Dynamism in the solar core. In: Proceedings of the Third UN/ESA/NASA Workshop on the International Heliophysical Year 2007 and Basic Space Science (eds. Haubold, H. J. and Mathai, A. M.). Berlin, Germany: Springer, pp. 103139.Google Scholar
[12]Guderley, G. 1942 Starke kugelige und zylindrische Verdichtungsstoesse in der Naehe des Kugelmittelpunktes bzw. der Zylinderachse. Luftfahrtforschung 19, 302312.Google Scholar
[13]Gell-Mann, M. and Tsallis, C. (eds.) 2004 Nonextensive Entropy: Interdisciplinary Applications. New York: Oxford University Press.CrossRefGoogle Scholar
[14]Goldman, E. B. 1973 Numerical modeling of laser-produced plasmas: The dynamics and neutron production in dense spherically symmetric plasmas. Plasma Phys. 15, 289310.Google Scholar
[15]Hafner, P. 1988 Strong convergent shock waves near the center of convergence: A power series solution. SIAM J. Appl. Math. 48, 12441261.CrossRefGoogle Scholar
[16]Haubold, H. J. and John, R. W. 1978 On the evaluation of an integral connected with the thermonuclear reaction rate in closed-form. Astronomische Nachrichten 299, 225232.CrossRefGoogle Scholar
[17]Haubold, H. J. and John, R. W. 1981 Analytical representation of the thermonuclear reaction rate and fusion energy production in a spherical plasma shock wave. Plasma Phys. 23, 399411.CrossRefGoogle Scholar
[18]Haubold, H. J. and Kumar, D. 2008 Extension of thermonuclear functions through the pathway model, including Maxwell–Boltzmann and Tsallis distributions. Astroparticle Phys. 29, 7076.Google Scholar
[19]Haubold, H. J. and Mathai, A. M. 1998 On thermonuclear reaction rates. Astrophys. Space Sci. 258, 185199.Google Scholar
[20]Haubold, H. J., Kumar, D., Nair, S. S. and Joseph, D. P. 2010 Special functions and pathways for problems in astrophysics: An essay in honor of A.M. Mathai. Fractional Calculus Appl. Anal. 13, 133158.Google Scholar
[21]Lazarus, R. B. 1981 Self-similar solutions for converging shocks and collapsing cavities. SIAM J. Numer. Anal. 18, 316371.CrossRefGoogle Scholar
[22]Mathai, A. M. 1993 A Handbook of Generalized Special Functions for Statistics and Physical Sciences. Oxford, UK: Clarendo Press.Google Scholar
[23]Mathai, A. M. 2005 A pathway to matrix-variate gamma and normal densities. Linear Algebra Appl. 396, 317328.CrossRefGoogle Scholar
[24]Mathai, A. M. and Haubold, H. J. 1988 Modern Problems in Nuclear and Neutrino Astrophysics. Berlin, Germany: Academie-Verlag.Google Scholar
[25]Mathai, A. M. and Haubold, H. J. 2007 Pathway model, superstatistics, Tsallis statistics and a generalized measure of entropy. Physica A 375, 110122.Google Scholar
[26]Mathai, A. M. and Haubold, H. J. 2007 On generalized entropy measures and pathways. Physica A 385, 493500.Google Scholar
[27]Mathai, A. M. and Haubold, H. J. 2008 On generalized distributions and pathways. Phys. Lett. A 372, 21092113.CrossRefGoogle Scholar
[28]Mathai, A. M. and Haubold, H. J. 2008 Special Functions for Applied Physicists. New York: Springer.CrossRefGoogle Scholar
[29]Mathai, A. M., Saxena, R. K and Haubold, H. J. 2010 The H-Function: Theory and Applications. New York: Springer.Google Scholar
[30]Mathai, A. M. and Saxena, R. K. 1973 Generalized Hypergeometric Functions with Applications in Statistics and Physical Sciences, Vol. 348 (Lecture Notes in Mathematics). Berlin, Germany: Springer-Verlag.CrossRefGoogle Scholar
[31]Mathai, A. M. and Saxena, R. K. 1978 The H-Function with Applications in Statistics and Other Disciplines. New York: Halsted Press (John Wiley).Google Scholar
[32]Rygg, J. R. 2006 Shock convergence and mix dynamics in inertial confinement fusion. Ph.D. thesis, Massachusetts Institute of Technology, Massachusetts.Google Scholar
[33]Saxena, R. K., Mathai, A. M. and Haubold, H. J. 2004 Astrophysical thermonuclear functions for Boltzmann–Gibbs statistics and Tsallis statistics. Physica A 344, 649656.Google Scholar
[34]Tsallis, C. 2009 Introduction to Nonextensive Statistical Mechanics: Approaching a Complex World. New York: Springer.Google Scholar
[35]Vecchio, A. and Carbone, V. 2009 Spatio-temporal analysis of solar activity: Main periodicities and period length variations. Astron. Astrophys. 502, 981987.Google Scholar
[36]Wolff, Ch. L. 2002 Rotational sequences of global oscillations inside the sun. Astrophys. J. 580, L181L184.Google Scholar
[37]Wolff, Ch. L. 2007 Coupled groups of G-modes in a sun with a mixed core. Astrophys. J. 661, 568585.Google Scholar
[38]Wolff, Ch. L. 2009 Effects of a deep mixed shell on solar g-modes, p-modes and neutrino flux. Astrophys. J. 701, 686697.CrossRefGoogle Scholar
[39]Zel'dovich, Ya. B. and Raizer, Yu. P. 2002 Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (eds. Hayes, W. D. and Probstein, R. F.). New York: Dover.Google Scholar