Hostname: page-component-669899f699-b58lm Total loading time: 0 Render date: 2025-04-25T07:26:33.103Z Has data issue: true hasContentIssue false

Correlations between X-rays, visible light and drive-beam energy loss observed in plasma wakefield acceleration experiments at FACET-II

Published online by Cambridge University Press:  18 September 2024

Chaojie Zhang*
Affiliation:
Department of Electrical and Computer Engineering, University of California Los Angeles, Los Angeles, CA 90095, USA
Doug Storey
Affiliation:
SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
Pablo San Miguel Claveria
Affiliation:
LOA, ENSTA Paris, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91762 Palaiseau, France GoLP/Instituto de Plasmas e Fusao Nuclear, Instituto Superior Tecnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
Zan Nie
Affiliation:
Department of Electrical and Computer Engineering, University of California Los Angeles, Los Angeles, CA 90095, USA
Ken A. Marsh
Affiliation:
Department of Electrical and Computer Engineering, University of California Los Angeles, Los Angeles, CA 90095, USA
Warren B. Mori
Affiliation:
Department of Electrical and Computer Engineering, University of California Los Angeles, Los Angeles, CA 90095, USA Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, CA 90095, USA
Erik Adli
Affiliation:
Department of Physics, University of Oslo, Oslo 0316, Norway
Weiming An
Affiliation:
Department of Astronomy, Beijing Normal University, Beijing 100875, PR China Institute for Frontiers in Astronomy and Astrophysics, Beijing Normal University, Beijing 102206, PR China
Robert Ariniello
Affiliation:
SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
Gevy J. Cao
Affiliation:
Department of Physics, University of Oslo, Oslo 0316, Norway
Christine Clark
Affiliation:
SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
Sebastien Corde
Affiliation:
LOA, ENSTA Paris, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91762 Palaiseau, France
Thamine Dalichaouch
Affiliation:
Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, CA 90095, USA
Christopher E. Doss
Affiliation:
Department of Physics, Center for Integrated Plasma Studies, University of Colorado Boulder, Boulder, CO 80309, USA
Claudio Emma
Affiliation:
SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
Henrik Ekerfelt
Affiliation:
SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
Elias Gerstmayr
Affiliation:
SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA Stanford Pulse Institute, Stanford University, Menlo Park, CA 94305, USA
Spencer Gessner
Affiliation:
SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
Claire Hansel
Affiliation:
Department of Physics, Center for Integrated Plasma Studies, University of Colorado Boulder, Boulder, CO 80309, USA
Alexander Knetsch
Affiliation:
SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA LOA, ENSTA Paris, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91762 Palaiseau, France
Valentina Lee
Affiliation:
Department of Physics, Center for Integrated Plasma Studies, University of Colorado Boulder, Boulder, CO 80309, USA
Fei Li
Affiliation:
Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, CA 90095, USA Department of Engineering Physics, Tsinghua University, Beijing 100084, PR China
Mike Litos
Affiliation:
Department of Physics, Center for Integrated Plasma Studies, University of Colorado Boulder, Boulder, CO 80309, USA
Brendan O'Shea
Affiliation:
SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
Glen White
Affiliation:
SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
Gerry Yocky
Affiliation:
SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
Viktoriia Zakharova
Affiliation:
LOA, ENSTA Paris, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91762 Palaiseau, France
Mark Hogan
Affiliation:
SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
Chan Joshi
Affiliation:
Department of Electrical and Computer Engineering, University of California Los Angeles, Los Angeles, CA 90095, USA
*
Email address for correspondence: [email protected]

Abstract

This study documents several correlations observed during the first run of the plasma wakefield acceleration experiment E300 conducted at FACET-II, using a single drive electron bunch. The established correlations include those between the measured maximum energy loss of the drive electron beam and the integrated betatron X-ray signal, the calculated total beam energy deposited in the plasma and the integrated X-ray signal, among three visible light emission measuring cameras and between the visible plasma light and X-ray signal. The integrated X-ray signal correlates almost linearly with both the maximum energy loss of the drive beam and the energy deposited into the plasma, demonstrating its usability as a measure of energy transfer from the drive beam to the plasma. Visible plasma light is found to be a useful indicator of the presence of a wake at three locations that overall are two metres apart. Despite the complex dynamics and vastly different time scales, the X-ray radiation from the drive bunch and visible light emission from the plasma may prove to be effective non-invasive diagnostics for monitoring the energy transfer from the beam to the plasma in future high-repetition-rate experiments.

Type
Research Article
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Adli, E. 2022 Towards a PWFA linear collider – opportunities and challenges. J. Instrum. 17 (05), T05006.Google Scholar
Albert, F., Lemos, N., Shaw, J.L., Pollock, B.B., Goyon, C., Schumaker, W., Saunders, A.M., Marsh, K.A., Pak, A., Ralph, J.E., et al. 2017 Observation of betatron X-ray radiation in a self-modulated laser wakefield accelerator driven with picosecond laser pulses. Phys. Rev. Lett. 118 (13), 134801.Google Scholar
Boulton, L., Lindstrøm, C.A., Beinortaite, J., Svensson, J.B., Garland, J.M., Caminal, P.G., Hidding, B., Loisch, G., Peña, F., Põder, K., et al. 2022 Longitudinally resolved measurement of energy-transfer efficiency in a plasma-wakefield accelerator. arXiv:2209.06690.Google Scholar
Chen, P., Su, J.J., Dawson, J.M., Bane, K.L.F. & Wilson, P.B. 1986 Energy transfer in the plasma wake-field accelerator. Phys. Rev. Lett. 56 (12), 12521255.Google Scholar
Claveria, P.S.M., Storey, D., Cao, G.J., Di Piazza, A., Ekerfelt, H., Gessner, S., Gerstmayr, E., Grismayer, T., Hogan, M., Joshi, C., et al. 2023 Commissioning and first measurements of the initial X-ray and $\{\gamma \}$-ray detectors at FACET-II. arXiv:2310.05535.Google Scholar
Corde, S., Adli, E., Allen, J.M., An, W., Clarke, C.I., Clayton, C.E., Delahaye, J.P., Frederico, J., Gessner, S., Green, S.Z., et al. 2015 Multi-gigaelectronvolt acceleration of positrons in a self-loaded plasma wakefield. Nature 524 (7566), 442445.Google Scholar
D'Arcy, R., Chappell, J., Beinortaite, J., Diederichs, S., Boyle, G., Foster, B., Garland, M.J., Caminal, P.G., Lindstrøm, C.A., Loisch, G., et al. 2022 Recovery time of a plasma-wakefield accelerator. Nature 603 (7899), 5862.Google Scholar
Esarey, E., Schroeder, C.B. & Leemans, W.P. 2009 Physics of laser-driven plasma-based electron accelerators. Rev. Mod. Phys. 81 (3), 12291285.Google Scholar
Froula, D.H., Clayton, C.E., Döppner, T., Marsh, K.A., Barty, C.P.J., Divol, L., Fonseca, R.A., Glenzer, S.H., Joshi, C., Lu, W., et al. 2009 Measurements of the critical power for self-injection of electrons in a laser wakefield accelerator. Phys. Rev. Lett. 103 (21), 215006.Google Scholar
Gessner, S. 2021 The FACET-II data acquisition system. In Proceedings of the 10th International Beam Instrumentation Conference, IBIC2021 (ed. Kim, C.), 3 pages. JACoW Publishing.Google Scholar
Hogan, M.J., Barnes, C.D., Clayton, C.E., Decker, F.J., Deng, S., Emma, P., Huang, C., Iverson, R.H., Johnson, D.K., Joshi, C., et al. 2005 Multi-GeV energy gain in a plasma-wakefield accelerator. Phys. Rev. Lett. 95 (5), 054802.Google Scholar
Joshi, C. 2021 New ways to smash particles. Sci. Am. 325 (1), 5461.Google Scholar
Joshi, C., Adli, E., An, W., Clayton, C.E., Corde, S., Gessner, S., Hogan, M.J., Litos, M., Lu, W., Marsh, K.A., et al. 2018 Plasma wakefield acceleration experiments at FACET II. Plasma Phys. Control. Fusion 60 (3), 034001.Google Scholar
Kirby, N. 2009 Properties of Trapped Electron Bunches in a Plasma Wakefield Accelerator. PhD thesis, Stanford University.Google Scholar
Lemos, N., Albert, F., Shaw, J.L., Papp, D., Polanek, R., King, P., Milder, A.L., Marsh, K.A., Pak, A., Pollock, B.B., et al. 2018 Bremsstrahlung hard x-ray source driven by an electron beam from a self-modulated laser wakefield accelerator. Plasma Phys. Control. Fusion 60 (5), 054008.Google Scholar
Litos, M., Adli, E., An, W., Clarke, C.I., Clayton, C.E., Corde, S., Delahaye, J.P., England, R.J., Fisher, A.S., Frederico, J., et al. 2014 High-efficiency acceleration of an electron beam in a plasma wakefield accelerator. Nature 515 (7525), 9295.Google Scholar
Loisch, G., Asova, G., Boonpornprasert, P., Brinkmann, R., Chen, Y., Engel, J., Good, J., Gross, M., Grüner, F., Huck, H., et al. 2018 Observation of high transformer ratio plasma wakefield acceleration. Phys. Rev. Lett. 121 (6), 064801.Google Scholar
Oz, E. 2004 Optical diagnostics for plasma wakefield accelerators. In AIP Conference Proceedings (ed. Yakimenko, V.), vol. 737, pp. 708714. AIP.Google Scholar
Peña, F., Lindstrøm, C.A., Beinortaitė, J., Svensson, J.B., Boulton, L., Diederichs, S., Foster, B., Garland, J.M., Caminal, P.G., Loisch, G., et al. 2023 Energy Depletion and Re-Acceleration of Driver Electrons in a Plasma-Wakefield Accelerator. arXiv:2305.09581.Google Scholar
Pompili, R., Alesini, D., Anania, M.P., Arjmand, S., Behtouei, M., Bellaveglia, M., Biagioni, A., Buonomo, B., Cardelli, F., Carpanese, M., et al. 2022 Free-electron lasing with compact beam-driven plasma wakefield accelerator. Nature 605 (7911), 659662.Google Scholar
Roussel, R., Andonian, G., Lynn, W., Sanwalka, K., Robles, R., Hansel, C., Deng, A., Lawler, G., Rosenzweig, J.B., Ha, G., et al. 2020 Single shot characterization of high transformer ratio wakefields in nonlinear plasma acceleration. Phys. Rev. Lett. 124 (4), 044802.Google Scholar
San Miguel Claveria, P., Adli, E., Amorim, L.D., An, W., Clayton, C.E., Corde, S., Gessner, S., Hogan, M.J., Joshi, C., Kononenko, O., et al. 2019 Betatron radiation and emittance growth in plasma wakefield accelerators. Phil. Trans. R. Soc. A 377 (2151), 20180173.Google Scholar
Singh, P.K., Pathak, V.B., Shin, J.H., Choi, I.W., Nakajima, K., Lee, S.K., Sung, J.H., Lee, H.W., Rhee, Y.J., Aniculaesei, C., et al. 2020 Electrostatic shock acceleration of ions in near-critical-density plasma driven by a femtosecond petawatt laser. Sci. Rep. 10 (1), 18452.Google Scholar
Storey, D., Zhang, C., San Miguel Claveria, P., Cao, G.J., Adli, E., Alsberg, L., Ariniello, R., Clarke, C., Corde, C., Dalichaouch, T.N., et al. 2024 Wakefield generation in hydrogen and lithium plasmas at FACET-II: diagnostics, and first beam-plasma interaction results. Phys. Rev. Accel. Beams 27 (5), 051302.Google Scholar
Vafaei-Najafabadi, N., Marsh, K.A., Clayton, C.E., An, W., Mori, W.B., Joshi, C., Lu, W., Adli, E., Corde, S., Litos, M., et al. 2014 Beam loading by distributed injection of electrons in a plasma wakefield accelerator. Phys. Rev. Lett. 112 (2), 025001.Google Scholar
Wang, W., Feng, K., Ke, L., Yu, C., Xu, Y., Qi, R., Chen, Y., Qin, Z., Zhang, Z., Fang, M., et al. 2021 Free-electron lasing at 27 nanometres based on a laser wakefield accelerator. Nature 595 (7868), 516520.Google Scholar
Yakimenko, V., Alsberg, L., Bong, E., Bouchard, G., Clarke, C., Emma, C., Green, S., Hast, C., Hogan, M.J., Seabury, J., et al. 2019 FACET-II facility for advanced accelerator experimental tests. Phys. Rev. Accel. Beams 22 (10), 101301.Google Scholar
Zgadzaj, R., Silva, T., Khudyakov, V.K., Sosedkin, A., Allen, J., Gessner, S., Li, Z., Litos, M., Vieira, J., Lotov, K.V., et al. 2020 Dissipation of electron-beam-driven plasma wakes. Nat. Commun. 11 (1), 4753.Google Scholar
Zhang, C., Storey, D., San Miguel Claveria, P., Nie, Z., Marsh, K.A., Hogan, M., Mori, W.B., Adli, E., An, W., Ariniello, R., et al. 2024 Generation of meter-scale hydrogen plasmas and efficient, pump-depletion-limited wakefield excitation using 10 GeV electron bunches. Plasma Phys. Control. Fusion 66 (2), 025013.Google Scholar