Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-27T13:59:53.717Z Has data issue: false hasContentIssue false

Alfvén surface waves in a two-ion-species cylindrical plasma with finite edge density

Published online by Cambridge University Press:  13 March 2009

A. B. Murphy
Affiliation:
Max-Planck-Institut für Plasmaphysik, EURATOM Association, D-8046 Garching, Federal Republic of Germany

Abstract

Dispersion relations are obtained for Alfvén surface waves in a two-ion-species cylindrical plasma with finite edge density. A simple step density profile is used. The results are compared with those obtained in a plasma surrounded by a vacuum layer. For modes with positive poloidal mode number m the finite-density edge region introduces an ion-cyclotron resonance and a waveguide cutoff in the surface-wave dispersion relation at the cyclotron frequency of each ion species. For negative-m modes a new dispersion-relation branch is introduced at frequencies just below the ion-cyclotron frequency of each species. The origin of these effects is analysed in terms of the wave types that can propagate in the regions of constant density, and their interaction with the Alfvén and ion-ion hybrid resonances in these regions. This interaction is shown to be determined by the polarization of the wave fields. The relevance of the results to the Alfvén-wave and ion-cyclotron-resonance heating schemes is discussed. The possibility that the excitation of high-m surface waves contributes to the anomalously large fraction of power that is found to be deposited in the plasma edge during ion-cyclotron-resonance heating is considered.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Akiyama, H., Hagler, M. O. & Kristiansen, M. 1985 IEEE Trans. Plasma Sci. 13, 125.CrossRefGoogle Scholar
Appert, K., Vaclavik, J. & Villard, L. 1983 Proceedings of the 11th European Conference on Controlled Fusion and Plasma Physics, Aachen, 1983, Part I, p. 305. Europhysics Conference Abstracts, Vol. 7D. European Physical Society.Google Scholar
Appert, K., Vaclavik, J. & Villard, L. 1984 Phys. Fluids, 27, 432.CrossRefGoogle Scholar
Ballico, M. J., Brennan, M. H., Cross, R. C., Lehane, J. A. & Sawley, M. L. 1988 Plasma Phys. Contr. Fusion, 30, 1331.CrossRefGoogle Scholar
Ballico, M. J. & Cross, R. C. 1989 a Plasma Phys. Contr. Fusion, 31, 1141.CrossRefGoogle Scholar
Ballico, M. J. & Cross, R. C. 1989 b Phys. Fluids, in press.Google Scholar
Borg, G. G., Brennan, M. H., Cross, R. C., Giannone, L. & Donnelly, I. J. 1985 Plasma Phys. Contr. Fusion, 27, 1125.CrossRefGoogle Scholar
Borg, G. G. & Cross, R. C. 1987 Plasma Phys. Contr. Fusion, 29, 681.CrossRefGoogle Scholar
Bureš, M., Brinkschulte, H., Jacquinot, J., Lawson, K. D., Kaye, A. & Tagle, J. A. 1988 Plasma Phys. Contr. Fusion, 30, 149.CrossRefGoogle Scholar
Collins, G. A., Cramer, N. F. & Donnelly, I. J. 1984 Plasma Phys. Contr. Fusion, 26, 273.CrossRefGoogle Scholar
Collins, G. A., Hofmann, F., Joye, B., Keller, R., Lietti, A., Lister, J. B. & Pochelon, A. 1986 Phys. Fluids, 29, 2260.CrossRefGoogle Scholar
Coppi, B. & Sharky, N. 1981 Nucl. Fusion, 21, 1363.CrossRefGoogle Scholar
Cramer, N. F. & Donnelly, I. J. 1983 Plasma Phys. 25, 703.CrossRefGoogle Scholar
Cramer, N. F. & Donnelly, I. J. 1984 Plasma Phys. Contr. Fusion, 26, 1285.CrossRefGoogle Scholar
Cramer, N. F. & Yung, C.-M. 1986 Plasma Phys. Contr. Fusion. 28, 1043.CrossRefGoogle Scholar
Cross, R. C. & Murphy, A. B. 1986 Plasma Phys. Contr. Fusion, 28, 597.CrossRefGoogle Scholar
De Chambrier, A., Collins, G. A., Hollenstein, C., Joye, B., Lister, J. B., Moret, J.-M., Nowak, S., Pochelon, A. & Simm, W. 1984 Centre de Recherches en Physique des Plasmas, École Polytechnique Fédérale de Lausanne Report LRP 241/84.Google Scholar
Donnelly, I. J., Clancy, B. E. & Cramer, N. F. 1986 J. Plasma Phys. 35, 75.CrossRefGoogle Scholar
Donnelly, I. J. & Cramer, N. F. 1984 Plasma Phys. Contr. Fusion, 26, 769.CrossRefGoogle Scholar
Li, W. Q., Mahajan, S. M. & Ross, D. W. 1985 Bull. Am. Phys. Soc., Ser. 2, 30, 1593.Google Scholar
Messiaen, A. M., Koch, R., Bhatnagar, V. P., Vandenplas, P. E. & Weynants, R. R. 1984 Proceedings of the 4th International Symposium on Heating in Toroidal Plasmas, Rome, 1984 (ed. Knoepfel, H. & Sindoni, E.), Vol. 1, p. 315. International School of Plasma Physics.Google Scholar
Murphy, A. B. 1989 Plasma Phys. Contr. Fusion, 31, 21.CrossRefGoogle Scholar
Paoloni, F. J. 1975 Phys. Fluids, 18, 640.CrossRefGoogle Scholar
Steinmetz, K. et al. 1989 Nucl. Fusion, 29, 277.CrossRefGoogle Scholar
Sugihara, R. & Yamanaka, K. 1988 Nucl. Fusion, 28, 2161.CrossRefGoogle Scholar
Van Nieuwenhove, R., Koch, R., Van Oost, G., Gernhardt, J. & Noterdaeme, J.-M. 1987 Proceedings of the 14th European Conference on Controlled Fusion and Plasma Physics, Madrid, 1987 (ed. Engelmann, F. & Rivas, J. L. Alvarez), Part 3, p. 928. Europhysics Conference Abstracts, Vol. 11D. European Physical Society.Google Scholar