Article contents
On the Flow Structures Under a Partially Inundated Bridge Deck
Published online by Cambridge University Press: 22 March 2012
Abstract
This paper presents the flow structure under a partially inundated bridge deck measured by using particle image velocimetry (PIV) and flow visualization techniques. The approaching flow was subcritical having Froude number F in the range 0.12 ∼ 0.55. The proximity ratio Pr (= ratio of clearance below the bridge deck h to the total depth of deck D) was varied from 0.57 to 2. Depending upon the Froude number F and proximity ratio Pr, four types of flow structures under the bridge deck were recognized. In flow Type I, the water surface elevation on the downstream side of bridge deck is slightly lower than the counterpart on the upstream side, and the shear layer formed at the bottom of upstream girder continuously fluctuates and touches soffit of all girders. In the case of flow Type II, the water surface on downstream side of bridge deck is lower than that on the upstream side and the shear layer originating from the upstream girder impinges near the third cavity between girders. However, in both the cases, the cavities between the girders are completely occupied by vortices. On the contrary, in the cases of flow Type III and flow Type IV, the flow is separated from the upstream girder edge. However, in flow Type III, the separated flow impinges on successive girders and cavities are partially filled by water; while in flow Type IV, the flow is totally separated from the deck bottom like orifice flow. The phenomena of vortex formation within the cavities are discussed for the cases of flow Type I and flow Type II. Also, for the vertical distribution of mean streamwise velocity in the shear layer below bridge deck, the nonlinear regression equations are developed. Using the distributions of measured mean streamwise velocity within the shear layer below the bridge deck at different streamwise distances, the similarity profile is obtained. The mean velocity deficit (usl – usu) and representative thickness bs are considered as the appropriate characteristic velocity and length scales for developing similarity profile. The proposed characteristic scales provided unique similarity profiles having promising regression coefficient. The similarity profile proposed is suitable for more general case of bridge deck having different bridge girders and even for rectangular block without girder. Further, the turbulence characteristics for the flow below the bridge deck are also presented.
Keywords
- Type
- Articles
- Information
- Copyright
- Copyright © The Society of Theoretical and Applied Mechanics, R.O.C. 2012
References
REFERENCES
- 7
- Cited by