In this article, we present a study of a new glass system: lead–germanium–tellurite glasses in the form of 0.05K2O–0.1ZnO–0.1BaO–0.2PbO–xGeO2–(0.55 - x)TeO2 with x = 0.1, 0.2, 0.3, 0.4, 0.5, and 0.55. Differential temperature analysis of this glass system shows that increasing GeO2 content raises the glass transition temperature (Tg) and suppresses the crystallization tendency in a large temperature range from Tg to the glass melting temperature. The maximum vibrational frequency is intermediate between germanate and fluoride glasses, in the range of 750 cm−1 to 820 cm−1. Subsequently, Optical absorption, photoluminescence, and upconversion fluorescence were measured for Yb3+, Er3+ co-doped lead–tellurium–germanate glasses. It was found that the full width at half-maximum of the fluorescence spectrum at 1534 nm decreases and the measured radiative lifetime increases with the replacement of TeO2 by GeO2. Excitation at 976 nm into the glass system leads to an intense green emission and a relatively weak red emission. With the addition of GeO2, the increase of red fluorescence and the decrease of green emission in intensity are due to the increase of nonradiative transition rates between the 4S3/2 and 4F9/2 states of Er3+ ions. The quadratic dependence of the green and red emissions on excitation power indicates that two-photon absorption process occurs in this glass system excited at 976 nm.