Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-23T19:13:19.213Z Has data issue: false hasContentIssue false

Critical factors that determine face-centered cubic to body-centered cubic phase transformation in sputter-deposited austenitic stainless steel films

Published online by Cambridge University Press:  03 March 2011

X. Zhang
Affiliation:
Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
A. Misra
Affiliation:
Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
R.K. Schulze
Affiliation:
Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
C.J. Wetteland
Affiliation:
Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
H. Wang
Affiliation:
Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
M. Nastasi
Affiliation:
Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
Get access

Abstract

Bulk austenitic stainless steels (SS) have a face-centered cubic (fcc) structure. However, sputter deposited films synthesized using austenitic stainless steel targets usually exhibit body-centered cubic (bcc) structure or a mixture of fcc and bcc phases. This paper presents studies on the effect of processing parameters on the phase stability of 304 and 330 SS thin films. The 304 SS thin films with in-plane, biaxial residual stresses in the range of approximately 1 GPa (tensile) to approximately 300 MPa (compressive) exhibited only bcc structure. The retention of bcc 304 SS after high-temperature annealing followed by slow furnace cooling indicates depletion of Ni in as-sputtered 304 SS films. The 330 SS films sputtered at room temperature possess pure fcc phase. The Ni content and the substrate temperature during deposition are crucial factors in determining the phase stability in sputter deposited austenitic SS films.

Type
Articles
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Dahlgren, S.D.: Equilibrium phases in 304L stainless steel obtained by sputter-deposition. Metall. Trans. 1, 3095 (1970).CrossRefGoogle Scholar
2Godbole, M.J., Pedraza, A.J., Allard, L.F. and Geesey, G.: Characterization of sputter-deposited 316L stainless steel films. J. Mater. Sci. 27, 5585 (1992).CrossRefGoogle Scholar
3Malavasi, S., Oueldennaoua, A., Foos, M. and Frantz, C.: Metastable amorphous and crystalline phase in physical vapor deposited Fe-(Cr)-Ni-(C) deposits. J. Vac. Sci. Technol. A5, 1888 (1987).CrossRefGoogle Scholar
4Childress, J., Liou, S.H. and Chien, C.L.: Ferromagnetism in metastable 304 stainless steel with bcc structure. J. Appl. Phys. 64, 6059 (1988).CrossRefGoogle Scholar
5Eymery, J.P. and Krishnan, R.: On some magnetic properties of 304 stainless steel films. J. Magn. Magn. Mater. 104–107, 1785 (1992).CrossRefGoogle Scholar
6Kelly, T.F., Cohen, M. and Sande, J.B. Vander: Rapid solidification of a droplet-processed stainless steel. Metall. Trans. A15, 819 (1984).CrossRefGoogle Scholar
7Reed, R.P., “Martensitic Phase Transformation,” in Materials at Low Temperatures, edited by Reed, R.P. and Clark, A.F. (American Society for Metals Carnes Publication Services, Metals Park, OH, 1983), p. 299Google Scholar
8Machlin, E.S., in Materials Science in Microelectronics (Giro Press, Croton-on-Hudson, New York, 1995), p. 157.Google Scholar
9Godbole, M.J., Pedraza, A.J., Park, J.W. and Geesey, G.: The crystal structures of stainless steel films sputter-deposited on austenitic stainless steel substrates. Scripta Metall. Mater. 28, 1201 (1993).CrossRefGoogle Scholar
10Zhang, X., Misra, A., Wang, H., Shen, T.D., Swadener, J.G., Embury, J.D., Kung, H., Hoagland, R.G. and Nastasi, M.: Strengthening mechanisms in nanostructured copper/304 stainless steel multilayers. J. Mater. Res. 18, 1600 (2003).CrossRefGoogle Scholar
11Stoney, G.G.: Proc. R. Soc. London A82, 172 (1909).Google Scholar
12Doolittle, L.R.: Algorithms for the rapid simulation of Rutherford backscattering spectra. Nucl. Instrum. Methods Physics Research B9, 344 (1985).Google Scholar
13Doolittle, L.R.: A semiautomatic algorithm for Rutherford backscattering analysis. Nucl. Instrum. Methods Physics Research B15, 227 (1986).Google Scholar
14Zhang, X., Misra, A., Wang, H., Shen, T.D., Nastasi, M., Mitchell, T.E., Hirth, J.P., Hoagland, R.G. and Embury, J.D.: Enhanced hardening in Cu/330 stainless steel multilayers by nanoscale twinning. Acta Mater. 52, 995 (2004).CrossRefGoogle Scholar
15Zhang, X., Misra, A., Wang, H., Nastasi, M., Embury, J.D., Mitchell, T.E., Hoagland, R.G. and Hirth, J.P.: Nanoscale-twinning-induced strengthening in austenitic stainless steel thin films. Appl. Phys. Lett. 84 1096 (2004).Google Scholar
16Duan, S.L., Artman, J.O., Wong, B. and Laughlin, D.E.: Study of the growth characteristics of sputtered Cr thin films. J. Appl. Phys. 67, 4913 (1990).Google Scholar
17Okolo, B., Lamparter, P., Welzel, U., and Mittemeijer, E.J.: Stress, texture, and microstructure in niobium thin films sputter deposited onto amorphous substrates. 95, 466 (2004).Google Scholar
18Schell, N., Petersen, J.H., Bøttiger, J., Mucklich, A., Chevallier, J., Andreasen, K.P. and Eichhorn, F.: On the development of texture during growth of magnetron-sputtered CrN. Thin Solid Films 426 100 (2003).CrossRefGoogle Scholar
19Oh, U.C., Je, J.H. and Lee, J.Y.: Change of the critical thickness in the preferred orientation of TiN films. J. Mater. Res. 10, 634 (1995).CrossRefGoogle Scholar
20Pelleg, J., Zevin, L.Z., Lungo, S. and Croitoru, N.: Reactive-sputter-deposited TiN films on glass substrates. Thin Solid Films 197, 117 (1991).Google Scholar
21Thompson, C.V.: Texture evolution during grain growth in polycrystalline films. Scripta Metall. Mater. 28, 167 (1993).CrossRefGoogle Scholar
22Adibi, F., Petrov, I., Greene, J.E., Hultman, L. and Sundgren, J-E.: Effects of high-flux low-energy (20–100 eV) ion irradiation during deposition on the microstructure and preferred orientation of Ti0.5Al0.5N alloys grown by ultra-high-vacuum reactive magnetron sputtering. J. Appl. Phys. 73, 8580 (1993).CrossRefGoogle Scholar
23Schell, N., Matz, W., Bøttiger, J., Chevallier, J. and Kringhøj, P.: Development of texture in TiN films by use of in situ synchrotron X-ray scattering. J. Appl. Phys. 91, 2037 (2002).Google Scholar
24Diagram Alloy Phase ASM Handbook (1990), Vol. 3, edited by International, ASM Handbook Committee (ASM International, Materials Park, OH).Google Scholar
25Grundy, P.J. and Marsh, J.M.: Amorphous thin films of stainless steel. J. Mater. Sci. Lett. 13, 677 (1978).Google Scholar
26Eymery, J.P., Merakeb, N., Goudeau, Ph., Fnidiki, A. and Bouzabata, B.: A Mossbauer comparative study of the local environment in metastable 304 stainless steel films depending on the preparation mode. J. Magn. Magn. Mater. 256, 227 (2003).Google Scholar
27Sarkar, S., Bansal, C. and Chatterjee, A.: Gibbs-Thomson effect in nanocrystalline Fe-Ge. Phys. Rev. B. 62, 3218 (2000).Google Scholar
28Kwon, O-H., Ahn, S-H., Kim, J-G. and Han, J-G.: An optimized condition for corrosion protection of type 316L films prepared by unbalanced magnetron sputtering in 3.5% NaCl solution. J. Mater. Sci. Lett. 21, 41 (2002).CrossRefGoogle Scholar