Bi12TiO20 (BTO); Bi12GaxBi1−xO19.5 (BGaO); and Bi12(M1/3P2/3)O20, M = Cd, Zn, and Ni (BMPO) thin films were prepared by pulsed laser deposition using a KrF excimer laser on (100)Y-stabilized zirconia (YSZ), (100)Bi12GeO20 (BGO), and (110)Bi12SiO20 (BSO) crystalline substrates. All these films have a sillenite structure. On (100)YSZ the sillenite is oriented as {310} with the 〈130〉 direction parallel to the 〈021〉YSZ directions (〈130〉{310}BTO〈021〉{100}YSZ). On (100)BGO and (110)BSO the sillenite film reproduces the substrate orientation, and the films formed are able to channel He+ particles. The optimum deposition temperatures for BTO and BGaO are 600 and 550 °C, respectively. Higher temperatures must be avoided to minimize the nucleation of Bi-deficient phases due to the diffusion of Bi into the YSZ substrates. BMPO films are polycrystalline. The lattice parameters of these films were determined. The crystalline films support guided optical modes. The refractive indices obtained for the films are close to those measured in bulk crystals, being slightly larger for films deposited on isomorphous sillenite substrates. The crystalline films deposited on YSZ are photoconductors when excited in the green and blue spectral regions.