Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-26T12:42:09.276Z Has data issue: false hasContentIssue false

Two-dimensional simulation of mass transport in polymer removal from a powder injection molding compact by thermal debinding

Published online by Cambridge University Press:  31 January 2011

Ying Shengjie
Affiliation:
School of Mechanical and Production Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798
Y. C. Lam
Affiliation:
School of Mechanical and Production Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798
S. C. M. Yu
Affiliation:
School of Mechanical and Production Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798
K. C. Tam
Affiliation:
School of Mechanical and Production Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798
Get access

Abstract

Two-dimensional simulation of thermal debinding in powder injection molding based on mass and heat transfer in deformable porous media is proposed. The primary mechanisms of mass transport, i.e., liquid flow, gas flow, vapor diffusion, and convection, as well as the pyrolysis of polymers, and their interactions, are included in the model. The simulated results revealed that polymer removal process is primarily affected by liquid flow, which is mainly dominated by pressure-forced flow rather than capillary-driven flow. A significant phenomenon, enrichment with liquid polymer in the outer surface regions of the compact, is explained.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1German, R.M., Int. J. Powder Metall. 23, 237 (1987).Google Scholar
2Calvert, P. and Cima, M., J. Am. Ceram. Soc. 73, 575 (1990).CrossRefGoogle Scholar
3Barone, M.R. and Ulicny, J.C., J. Am. Ceram. Soc. 73, 3323 (1990).CrossRefGoogle Scholar
4Stangle, G.C. and Aksay, I.A., Chem. Eng. Sci. 45, 1719 (1990).CrossRefGoogle Scholar
5Tsai, D-S., AIChE J. 37, 547 (1991).CrossRefGoogle Scholar
6Evans, J.R.G., Edirisinghe, M.J., Wright, J.K., and Crank, J., Proc. R. Soc. London A 432, 321 (1991).Google Scholar
7Matar, S.A., Edirisinghe, M.J., Evans, J.R.G., and Twizell, E.H., J. Mater. Res. 8, 617 (1993).CrossRefGoogle Scholar
8Matar, S.A., Edirisinghe, M.J., Evans, J.R.G., Twizell, E.H., and Song, J.H., J. Mater. Sci. 30, 3805 (1995).CrossRefGoogle Scholar
9Shaw, H.M. and Edirisinghe, M.J., Philos. Mag. A 72, 267 (1995).CrossRefGoogle Scholar
10Song, J.H., Edirisinghe, M.J., Evans, J.R.G., and Twizell, E.H., J. Mater. Res. 11, 830 (1996).CrossRefGoogle Scholar
11Lewis, J.A., Galler, M.A., and Bentz, D.P., J. Am. Ceram. Soc. 79, 1377 (1996).CrossRefGoogle Scholar
12Maximenko, A. and Van Der Biest, O., J. Eur. Ceram. Soc. 18, 1001 (1998).CrossRefGoogle Scholar
13Song, J.H., Evans, J.R.G., and Edirisinghe, M.J., J. Mater. Res. 15, 449 (2000).CrossRefGoogle Scholar
14Lam, Y.C., Shengjie, Ying, Yu, S.C.M., and Tam, K.C., Metall. Mater. Trans A 31A, 2597 (2000).CrossRefGoogle Scholar
15Cima, M.J., Lewis, J.A., and Devoe, A., J. Am. Ceram. Soc. 72, 1192 (1989).CrossRefGoogle Scholar
16Lewis, J.A. and Cima, M.J., in Ceramic Transactions, edited by Messing, G.L., Hirano, S., and Hausner, H. (Ceramic Powder Science II. 12, American Ceramic Society, Westerville, Ohio, 1990), p. 583.Google Scholar
17Shaw, H.M., Huttonand, T.J., and Edirisinghe, M.J., J. Mater. Sci. Lett. 11, 1075 (1992).Google Scholar
18Hwang, K.S. and Tsou, T.H., Metall. Trans. A 23A, 2775 (1992).CrossRefGoogle Scholar
19Hwang, K.S. and Tsou, T.H., Scr. Metall. Mater. 26, 655 (1992).CrossRefGoogle Scholar
20Liu, D.M. and Tseng, W.J., J. Mater. Sci. Lett. 16, 482 (1997).CrossRefGoogle Scholar
21Shengjie, Ying, Lam, Y.C., Yu, S.C.M., and Tam, K.C., Acta Mater. (2001, submitted).Google Scholar
22Himmelblau, D.M., Basic Principles and Calculations in Chemical Engineering, 6th ed. (Prentice Hall PTR, Upper Saddle River, New Jersey, 1996).Google Scholar
23Whitaker, S., in Advances in Heat Transfer (Academic Press, New York, 1977), Vol. 13, p. 119.Google Scholar
24Ried, R.C., Prausintz, J.M., and Poling, B.E., The Properties of Gases & Liquids, 4th ed. (McGraw-Hill, New York, 1987).Google Scholar
25Vogel, H., Physik Z. 22, 645 (1921).Google Scholar
26Neufeld, P.D., Janzen, A.R., and Aziz, R.A., J. Chem. Phys. 57, 1100 (1972).CrossRefGoogle Scholar
27Wilke, C.R.J., Chem. Phys. 18, 517 (1950).Google Scholar
28German, R.M., Powder Technol. 30, 81 (1981).CrossRefGoogle Scholar
29Scheidegger, A.E., The Physics of Flow Through Porous Media, 3rd ed. (University of Toronto Press, Toronto, Canada, 1974).Google Scholar
30Baver, L.D. and Gardner, W.H., Soil Physics, 4th ed. (Wiley, New York, 1972).Google Scholar
31Lewis, J.A., Annu. Rev. Mater. Sci. 27, 147 (1997).CrossRefGoogle Scholar
32Langer, I. and Lehnert, W., in Powder Injection Moulding, (1998 PM Word Congress Proceeding. 3, EPMA, 1998), p. 75.Google Scholar
33Sproson, D.W. and Messing, G.L., in Ceramic Transactions, edited by Messing, C.L., Fuller, E.R., and Hausner, H., Jr. (Ceramic Powder Science II, A1, American Ceramic Society, Inc., Wester-ville, Ohio, 1988), p. 528.Google Scholar
34Zhang, T., Chen, Z.G., Jiang, Z.Z., and Wu, J.G., in Ceramic Mate-rials and Components for Engines, edited by Tennery, V.J. (Proc. of 3rd Int. Symp., American Ceramic Society, Inc., Westerville, Ohio, 1989), p. 219.Google Scholar
35Su, S.R., in Synthesis and Processing of Ceramics: Scientific Issues, edited by Rhine, W.E., Shaw, T.M., Cottschall, R.J. and Chen, Y. (Mat. Res. Soc. Symp. Proc. 249, Pittsburgh, PA, 1992), p. 345.Google Scholar
36Zhang, Y., Uchida, N., and Uematsu, K., J. Mater. Sci. 30, 1357 (1995).CrossRefGoogle Scholar
37Bandyopadhyay, A., Danforth, S.C., and Safari, A., J. Mater. Sci. 35, 3983 (2000).CrossRefGoogle Scholar
38Edirisinghe, M.J., Mater. Manuf. Processes 12, 609 (1997).CrossRefGoogle Scholar
39Klosterman, D.A., Chartoff, R.P., Osborne, N.R., Graves, G.A., Lightman, A., Han, G.W., Bezeredi, A., Rodrigues, S., Park, S., Kalmanovich, G., Dodin, L., and Tu, S., Am. Ceram. Soc. Bull. 77, Oct., 69 (1998).Google Scholar
40Greul, M. and Lenk, R., Ind. Ceram. 20, 115 (2000).Google Scholar
41Song, J.H., Edirisinghe, M.J., and Evans, J.R.G., J. Am. Ceram. Soc. 82, 3374 (1999).CrossRefGoogle Scholar
42Shi, Z., Guo, Z.X., and Song, J.H., Mater. Sci. Technol. 16, 843 (2000).CrossRefGoogle Scholar
43Salam, L.A., Matthews, R.D., and Robertson, H., J. Eur. Ceram. Soc. 20, 335 (2000).CrossRefGoogle Scholar
44Liau, L.C-K., Peters, B., Krueger, D.S., Gordon, A., Viswanath, D.S., and Lombardo, S.J., J. Am. Ceram. Soc. 83, 2645 (2000).CrossRefGoogle Scholar