Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-27T05:39:16.908Z Has data issue: false hasContentIssue false

Thin-film fracture during nanoindentation of a titanium oxide film–titanium system

Published online by Cambridge University Press:  31 January 2011

M. Pang
Affiliation:
Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164–2920
D. F. Bahr
Affiliation:
Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164–2920
Get access

Abstract

Nanoindentation testing of the titanium oxide/titanium system with electrochemically grown oxide films exhibits permanent deformation prior to a yield excusion, indicating that the occurrence of this suddent discontinuity is predominantly controlled by oxide film cracking rather than dislocaton nucleation and multiplication. Observations of circumferential cracking also lend support to this explanation. A model has been developed to predict the mechanical response prior to oxide fracture for the case of a hard coating on a soft substrate. During loading contact, the hard coating undergoes elastic deflection which may include both bending and membrane stretching effects, while the substrate is elastoplastically deformed. The model works well for surface films thicker than 20 nm. Additionally, the maximum radial tensile stress in anodically grown titanium oxide, which is responsible for film cracking at the critical load, is approximately 15 GPa.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Johnson, R.M. and Block, R.J., Acta Metall. 16, 834 (1968).Google Scholar
2Panagopoulos, Chr. and Badekas, Hel., Mater. Lett. 7, 201 (1988).CrossRefGoogle Scholar
3Page, T.F. and Hainsworth, S.V., Surf. Coat. Technol. 67, 305 (1993).Google Scholar
4Chechenin, N.G., Bottiger, J., and Krog, J.P., Thin Solid Films 261, 228 (1995).CrossRefGoogle Scholar
5Pang, M., Wilson, D.E., and Bahr, D.F., in Thin Films-Stress and Mechanical Properties VIII, edited by Vinci, R., Kraft, O., Moody, N., Besser, P., and II, E. Shaffer (Mater. Res. Soc. Symp. Proc. 594, Warrendale, PA, 1999), p. 501506.Google Scholar
6Tsui, T.Y., Vlassak, J., and Nix, W.D., J. Mater. Res. 14, 2204 (1999).CrossRefGoogle Scholar
7Bahr, D.F., Kramer, D.E., and Gerberich, W.W., Acta Mater. 46, 3605 (1998).CrossRefGoogle Scholar
8Page, T.F., Oliver, W.C., and McHargue, C.J., J. Mater. Res. 7, 450 (1992).CrossRefGoogle Scholar
9Ramsey, P.M., Chandler, H.W., and Page, T.F., Surf. Coat. Technol. 49, 504 (1991).CrossRefGoogle Scholar
10McGurk, M.R., Chandler, H.W., and Page, T.F., Surf. Coat. Technol. 68/69, 576 (1994).CrossRefGoogle Scholar
11Whitehead, A.J. and Page, T.F., Thin Solid Films 220, 277 (1992).CrossRefGoogle Scholar
12McGurk, M.R. and Page, T.F., Surf. Coat. Technol. 92, 87 (1997).CrossRefGoogle Scholar
13Gerberich, W.W., Strojny, A., Yoder, K., and Cheng, L-S., J. Mater. Res. 14, 2211 (1999).CrossRefGoogle Scholar
14Djabella, H. and Arnell, R.D., Thin Solid Films 213, 205 (1992).CrossRefGoogle Scholar
15Gupta, P.K., Walowit, J.A., and Finkin, E.F., J. Lubr. Technol. 95, 427 (1973).CrossRefGoogle Scholar
16Chen, W.T., Int. J. Eng. Sci. 9, 775 (1971).CrossRefGoogle Scholar
17Weppelman, E. and Swain, M.V., Thin Solid Films 286, 111 (1996).CrossRefGoogle Scholar
18Pang, M., Eakins, D.P., Norton, M.G., and Bahr, D.F., Corrosion (2001, in press).Google Scholar
19Pethica, J.B. and Oliver, W.C., Phys. Scr. T19, 61 (1987).CrossRefGoogle Scholar
20Oliver, W.C. and Pharr, G.M., J. Mater. Res. 7, 1564 (1992).CrossRefGoogle Scholar
21Mann, A.B. and Pethica, J.B., Appl. Phys. Lett. 69, 907 (1996).CrossRefGoogle Scholar
22Syed, S.A. Asif and Pethica, J.B., Philos. Mag. A 76, 1105 (1997).CrossRefGoogle Scholar
23Kiely, J.D. and Houston, J.E., Phys. Rev. B 57, 12588 (1998).CrossRefGoogle Scholar
24Johnson, K.L., Contact Mechanics (Cambridge University Press, New York, 1985).CrossRefGoogle Scholar
25Barsoum, M., Fundamentals of Ceramics (McGraw-Hill, New York, 1997).Google Scholar
26Ugural, A.C., Stresses in Plates and Shells (McGraw-Hill, New York, 1981).Google Scholar
27Gupta, P.K. and Walowit, J.A., J. Lubr. Technol. 96, 250 (1974).CrossRefGoogle Scholar
28Kramer, D., Huang, H., Kriese, M., Robach, J., Nelson, J., Wright, A., Bahr, D., and Gerberich, W.W., Acta Mater. 47, 333 (1998).CrossRefGoogle Scholar
29Hay, J.C. and Pharr, G.M., in Thin Films—Stresses and Mechanical Properties VII, edited by Cammarata, R.C., Busso, E.P., Nastasi, M., and Oliver, W.C. (Mater. Res. Soc. Symp. Proc. 505, Warrendale, PA, 1998), pp. 6570.Google Scholar
30Timoshenko, S. and Woinowshy-Krieger, S., Theory of Plates and Shells (McGraw-Hill, New York, 1959).Google Scholar
31Hainsworth, S.V., Chandler, H.W., and Page, T.F., J. Mater. Res. 8, 1987 (1996).CrossRefGoogle Scholar
32Goodman, L.W. and Keer, L.M., Int. J. Solids Struct. 1, 407 (1965).CrossRefGoogle Scholar