Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-26T03:54:52.706Z Has data issue: false hasContentIssue false

Thermochemistry in the system Cu–In–S at 298 K

Published online by Cambridge University Press:  31 January 2011

H. Migge
Affiliation:
Hahn-Meitner-Institut GmbH, Glienicker Strasse 100, D-1000 Berlin 39, Germany
Get access

Abstract

A thermochemical analysis is performed in the system Cu–In–S at 298 K. Free energies of the compounds In6S7, In2.8S4, CuInS2, CuIn5S8, and of the recently discovered CuIn2 have been estimated, the numerical values (kJ/mol) of which are −1043 ± 21, −556 ± 8.8, −315 ± 54, −1238 ± 113, and −51 ± 26. A consistent set of data is used for the calculation of the Gibbs triangle as well as of the predominance area diagram. The results are in nearly complete agreement with the measurements published recently, in particular with those using the nuclear method of perturbed angular correlations (PAC). The compound CuInS2, one of the possible base materials for thin film solar cells, is shown to equilibrate with nearly all of the compounds of the system. A nonvariant four-phase equilibrium CuIn2−InS–In–CuInS2 is found at about 298 K. It is noted where more precise data are needed.

Type
Articles
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Fearheiley, M. L., Dietz, N., Scheer, R., and Lewerenz, H. J., Proc. Symp. on State-of-;the-Art Program on Compound Semiconductors XIII and Metallization of III- V Compound Semiconductors, Seattle, WA, October 1418, 1990.Google Scholar
2.Lewerenz, H. J., Goslowsky, H., Husemann, K-D., and Fichter, S., Nature 321, 687 (1986).CrossRefGoogle Scholar
3.Mitchell, K. W., Pollock, G. A., and Mason, A. V., Proc. 20th IEEE Photovoltaic Specialist Conf., Las Vegas, NV, 1988, p. 1542.Google Scholar
4.Brüßler, M., Metzner, H., Husemann, K-D., and Lewerenz, H. J., Phys. Rev. B 38, 9268 (1988).Google Scholar
5.Metzner, H., Brüßler, M., Husemann, K-D., and Lewerenz, H. J., submitted to Phys. Rev. B.Google Scholar
6.Fearheiley, M. L., Dietz, N., Birkholz, M., and Höpfner, C., J. Electron. Mater., in press.Google Scholar
7.Chakrabarti, D. J. and Laughlin, D. E., Bull. Alloy Phase Diagrams 4, 254 (1983).CrossRefGoogle Scholar
8.Barin, J., Knacke, O., and Kubaschewski, O., Thermochemical Properties of Inorganic Substances (Springer-Verlag, Berlin, 1973, Suppl. 1976).Google Scholar
9. JANAF Thermochemical Tables, 3rd ed., in J. Phys. and Chem. Ref. Data 14 (1985), Suppl.Google Scholar
10.Gödecke, T. and Schubert, K., Z. Metallkde. 76, 358 (1985).Google Scholar
11.Mills, K. C., Thermodynamic Data for Inorganic Sulphides, Selenides and Tellurides (Butterworth's, London, 1974).Google Scholar
12.Wagman, D. D., Evans, W. H., Parker, V. B., Schumm, R. H., Halow, I., Bailey, S. M., Churney, K. L., and Nuttall, R. L., the NBS tables of chemical thermodynamic properties, in J. Phys. and Chem. Ref. Data 11 (1982), Suppl.Google Scholar
13.Kubaschewski, O. and Alcock, C. B., Metallurgical Thermochemistry, 5th ed. (Pergamon Press, Oxford, New York, 1979).Google Scholar
14.Lindemer, T. B., Th. Besmann, M., and Johnson, C. E., J. Nucl. Mater. 100, 178 (1981).Google Scholar
15.Hultgren, R., Desai, P. D., Hawkins, D. T., Gleiser, M., Kelley, K. K., and Wagman, D. D., Selected Values of the Thermodynamic Properties of the Elements (ASM, Metals Park, OH, 1973).Google Scholar
16.Subramanian, P. R. and Laughlin, D. E., Bull. Alloy Phase Diagrams 10, 554 (1989).CrossRefGoogle Scholar
17.Jain, K. C., Ellner, M., and Schubert, K., Z. Metallkde. 63, 456 (1972).Google Scholar
18.Weibke, F. and Eggers, H., Z. anorg. allg. Chem. 220, 273 (1934).CrossRefGoogle Scholar
19.Weibke, F. and Eggers, H., Z. Metallkde. 31, 228 (1939).Google Scholar
20.Rajasekharan, Th. P. and Schubert, K., Z. Metallkde. 72, 275 (1981).Google Scholar
21.Wallbrecht, P. C., Blachnik, R., and Mills, K. C., Thermochim. Acta 48, 69 (1981).CrossRefGoogle Scholar
22.Keppner, W., Klas, T., Körner, W., Wesche, R., and Schatz, G., Phys. Rev. Lett. 54, 2371 (1985).CrossRefGoogle Scholar
23.Keppner, W., Wesche, R., Klas, T., Voigt, J., and Schatz, G., Thin Solid Films 143, 201 (1986).CrossRefGoogle Scholar
24.Kutsenok, I. B., Geiderikh, V. A., Gerasimov, Ya. I., and Yalkanen, Kh. K., Russ. J. Phys. Chem. 57, 1639 (1983).Google Scholar
25.Binsma, J. J. M., Giling, L. J., and Bloem, J., J. Cryst. Growth 50, 429 (1980).CrossRefGoogle Scholar
26.Verheijen, A. W., Giling, L. J., and Bloem, J., Mater. Res. Bull. XIV, 237 (1979).CrossRefGoogle Scholar
27.Binsma, J. J. M., J. Phys. Chem. Solids 44, 237 (1983).Google Scholar
28.Wiedemeier, H. and Santandrea, R., Z. anorg. allg. Chem. 497, 105 (1983).Google Scholar
29.Neumann, H., Crystal Res. & Technol. 18, 1567 (1983).CrossRefGoogle Scholar
30.Bachmann, K. J., Hsu, F. S. L., Thiel, F. A., and Kasper, H. M., J. Electron. Mater. 6, 431 (1977).Google Scholar
31.Fearheiley, M. L., private communication, December 1990.Google Scholar