Hostname: page-component-7bb8b95d7b-2h6rp Total loading time: 0 Render date: 2024-10-04T02:53:03.015Z Has data issue: false hasContentIssue false

Thermal expansion and high-temperature phase transformation of the yttrium silicate Y2SiO5

Published online by Cambridge University Press:  31 January 2011

J. W. Nowok
Affiliation:
Materials Science, Energy and Environmental Research Center, University of North Dakota, P.O. Box 9018, Grand Forks, North Dakota 58202
J. P. Kay
Affiliation:
Materials Science, Energy and Environmental Research Center, University of North Dakota, P.O. Box 9018, Grand Forks, North Dakota 58202
R. J. Kulas
Affiliation:
Materials Science, Energy and Environmental Research Center, University of North Dakota, P.O. Box 9018, Grand Forks, North Dakota 58202
Get access

Abstract

The linear thermal-expansion coefficients of yttrium silicate Y2SiO5, [Y2(SiO4)O] were measured in the temperature range from 20 to 1400 °C using x-ray diffraction. The anomalous behavior of thermal expansion was observed above Tc = 850 °C and was attributed to the displacive phase transformation. The transformation was reversible and resulted from the local order °C the compositional disorder and local fluctuation in the elastic free energy constrained a secondary transformation related to the polymorphic twin transformation. This created an additional peak in x-ray diffraction patterns at 2 's intensity. The characteristic of phase transformation both on heating and on cooling of the sample was also investigated using the differential thermal analysis method. The thermogravimetric technique did not indicate on a change of weight at Tc.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Kamal, S., Saodekar, P.V., and Bhoga, S.S., Bull. Mater. Sci. 21, 469 (1998).Google Scholar
2Masayiki, K., Yuzuru, O., and Tatsuo, M., J. Jpn. Inst. Metals 63, 661 (1999).Google Scholar
3Aparicio, M. and Durá;n, A., J. Am. Ceram. Soc. 83, 1351 (2000).CrossRefGoogle Scholar
4Fukuda, K., Maki, I., and Ito, S., J. Am. Ceram. Soc. 80, 1595 (1997).CrossRefGoogle Scholar
5O'Bryan, H.M., Gallagher, P.K., and Berkstresser, G.W., J. Am Ceram. Soc. 71, C42 (1988)CrossRefGoogle Scholar
6Rao, T.V., Reddy, G.G., and Ramakanth, A., Solid State Commun. 87, 157 (1993).Google Scholar
7Peterson, I.M. and Tien, T-Y., J. Am. Ceram. Soc. 78, 1977 (1995).CrossRefGoogle Scholar
8Webster, J.D., Westwood, M.E., Hayes, F.H., Day, R.J., Taylor, R., Duran, A., Aparicio, M., Rebstock, K., and Vogel, W.D., Key Enging Mater. 132–136, 1641 (1997).CrossRefGoogle Scholar
9McHurdie, H., Evans, M., Paretzkin, B., Wong-Ng, W., and Hubbard, C., Powder Diffraction, 1, 99 (1986).Google Scholar
10Johnson, I., Am. Mineral. 53, 1940 (1968).Google Scholar
11Liddell, K. and Thomson, D., Trans. J. Br. Ceram. Soc. 85, 17 (1986).Google Scholar
12Leonyuk, N.I., Belokoneva, E.L., Bocelli, G., Righi, L., Shvanskii, E.V., Henrykhson, R.V., Kulman, N.V., and Kozhbakhteeva, D.E., J. Cryst. Growth 205, 361 (1999).CrossRefGoogle Scholar
13Felsche, J., in Structure and Bonding, edited by Dunitz, J.D., Hemmerich, P., Ibers, J.A., Jørgensen, C.K., Neilands, J.B., Nyholm, R.S., Reinen, D., and Williams, R.J.P. (Springer Verlag, New York, 1973) Vol. 13, p. 100.Google Scholar
14Yamane, H., Omori, M., and Hirai, T., J. Mater. Sci. Lett. 14, 561 (1995).CrossRefGoogle Scholar
15Pujar, V.V. and Cawley, J.D., J. Am. Ceram. Soc. 78, 774 (1995).CrossRefGoogle Scholar
16Yamane, H., Nagasawa, T., Murakami, Y., Kamata, T., Shindo, D., Shimada, M., and Endo, T., Mater. Res. Bull. 33, 845 (1998).CrossRefGoogle Scholar