Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-26T22:32:09.619Z Has data issue: false hasContentIssue false

A systematic study of the synthesis of useful Tl2Ba2Ca2Cu3O10−δ bulk superconductor

Published online by Cambridge University Press:  03 March 2011

Y. Xin
Affiliation:
Midwest Superconductivity, Inc., Lawrence, Kansas 66049
B.R. Xu
Affiliation:
Department of Physics and Astronomy, University of Kansas, Lawrence, Kansas 66045
S. Nasrazadani
Affiliation:
Department of Mechanical Engineering, University of Arkansas, Fayetteville, Arkansas 72701
W.S. He
Affiliation:
Midwest Superconductivity, Inc., Lawrence, Kansas 66049
D.F. Lu
Affiliation:
Department of Physics and Astronomy, University of Kansas, Lawrence, Kansas 66045
G.F. Sun
Affiliation:
Department of Physics and Astronomy, University of Kansas, Lawrence, Kansas 66045
K.W. Wong
Affiliation:
Department of Physics and Astronomy, University of Kansas, Lawrence, Kansas 66045
D. Knapp
Affiliation:
Midwest Superconductivity, Inc., Lawrence, Kansas 66049
Get access

Abstract

A method to synthesize high density Tl2Ba2Ca2Cu3O10−δ bulk superconductor with uniformity from presintered powder of the 2223 phase material was developed. With a proper annealing process, the transport critical current density and the material density of such a synthesized superconductor are much improved over those of the starting material. The critical temperature and phase purity of this material are also enhanced. In this paper, we report our systematic study on some basic parameters of this material, including the normal state resistivity, Tc, Jc, phase purity, and morphology produced under different annealing conditions. An optimum preparation technique is then derived.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Murphy, D. W., Johnson, D. W. Jr., Jin, S., and Howard, R. E., Science 241, 922 (1988).CrossRefGoogle Scholar
2Schulz, R., Trudeau, M., Mirza, J., Critchlow, P., Begin, G., Roberge, R., Parent, L., and Moreau, C., Supercond. Sci. Technol. 1, 180 (1988).CrossRefGoogle Scholar
3Jin, S., Tiefel, T. H., Sherwood, R. C., van Dover, R.B., and Davis, M. E., Phys. Rev. B 37, 7850 (1988).CrossRefGoogle Scholar
4McGinn, P. J., Black, M. A., and Valenzuela, A., Physica C 156, 57 (1988).CrossRefGoogle Scholar
5McGinn, P.J., Chen, W., and Black, M. A., Physica C 161, 198 (1989).CrossRefGoogle Scholar
6Alford, N.McN., Button, T. W., Gough, C. E., Wellhofer, F., O'Connor, D.A., Colclough, M. S., Pollard, R. J., and Mc, D. G.Cartney, J. Appl. Phys. 66, 5930 (1989).CrossRefGoogle Scholar
7Jang, H. M., Moon, K. W., and Baik, S., Jpn. J. Appl. Phys. 28, 1223 (1989).CrossRefGoogle Scholar
8Jin, S., Mater. Sci. Eng. B7, 243 (1991).CrossRefGoogle Scholar
9Sheng, Z. Z. and Hermann, A. M., Nature 332, 138 (1988).CrossRefGoogle Scholar
10Perkin, S. S. P., Lee, V. Y., Engler, E. M., Nazzal, A. I., Huang, T. C., Gorman, G., Savoy, R., and Beyers, R., Phys. Rev. Lett. 60, 2539 (1988).CrossRefGoogle Scholar
11Alford, N.McN., Clegg, W. J., Harmer, M. A., Birchall, J. D., Kendall, K., and Jones, D. H., Nature 332, 58 (1988).CrossRefGoogle Scholar