Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-23T12:38:30.498Z Has data issue: false hasContentIssue false

Synthesis of Zn1–xMgxO and its structural characterization

Published online by Cambridge University Press:  31 January 2011

M. S. Tomar
Affiliation:
Physics Department, University of Puerto Rico, Mayaguez, Puerto Rico 00681
R. Melgarejo
Affiliation:
Physics Department, University of Puerto Rico, Mayaguez, Puerto Rico 00681
P. S. Dobal
Affiliation:
Physics Department, University of Puerto Rico, San Juan, Puerto Rico 00931
R. S. Katiyar
Affiliation:
Physics Department, University of Puerto Rico, San Juan, Puerto Rico 00931
Get access

Abstract

Zn1–xMgxO is an important material for optoelectronic devices. We synthesized this material using a solution-based route. We investigated in detail the structural behavior of this material system using x-ray diffraction and Raman spectroscopy. Mg substitution up to x ≈ 0.10 does not change the crystal structure, as revealed by x-ray diffraction and Raman spectroscopic studies. This synthesis route is also suitable to prepare thin films by spin coating with the possibility of p and n doping.

Type
Rapid Communications
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Ohtomo, A., Kawasaki, M., Koida, T., Koinuma, H., Sakurai, Y., Yoshida, Y., Yoshida, T., and Segava, Y., Appl. Phys. Lett. 72, 2466 (1998).CrossRefGoogle Scholar
2.Matsumoto, Y., Murakami, M., Jin, Z., Ohmoto, A., Lippmak, M., Kawasaki, M., and Koinuma, H., Jpn. J. Appl. Phys. Part 2 38, L603 (1999).CrossRefGoogle Scholar
3.Joseph, M., Tabata, H., and Kawai, T., Jpn. J. Appl. Phys. Part 2 38, L1205 (1999).CrossRefGoogle Scholar
4.Aoki, T., Hatanaka, Y., and Look, D.C., Appl. Phys. Lett. 76, 3257 (2000).CrossRefGoogle Scholar
5.Loudon, R., Adv. Phys. 13, 423 (1964).CrossRefGoogle Scholar
6.Calleja, J.M. and Cardona, M., Phys. Rev. B 16, 3753 (1977).CrossRefGoogle Scholar
7.Damen, T.C., Porto, S.P.S., and Tell, B., Phys. Rev. 142, 570 (1966).CrossRefGoogle Scholar
8.Mead, D.G. and Wilkinson, G.R., J. Raman Spectrosc. 6, 123 (1977).CrossRefGoogle Scholar
9.Sakai, A., Islam, E., Aoki, E., and Onodera, A., Ferroelectrics 230, 113 (2000).Google Scholar
10.Guha, S., Phys. Rev. B 21, 5808 (1980).CrossRefGoogle Scholar
11.Sharma, A.K., Kvit, A., and Narayan, J., J. Vac. Sci. Technol. A 17, 3393 (1999).CrossRefGoogle Scholar
12.Ishikawa, K., Fujima, N., and Komura, H., J. Appl. Phys. 57, 973 (1985).CrossRefGoogle Scholar
13.Look, D.C., Hemsky, J.W., and Sizelove, J.R., Phys. Rev. Lett. 82, 2552 (1999).CrossRefGoogle Scholar
14.Srikant, V. and Clarke, D.R., J. Appl. Phys. 83, 5447 (1998).CrossRefGoogle Scholar
15.Chaudhari, M.M. and Sands, H.S., J. Appl. Phys. 82, 785 (1997).CrossRefGoogle Scholar