Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-24T14:43:24.010Z Has data issue: false hasContentIssue false

Synthesis of α–SiO2 nanowires using Au nanoparticle catalysts on a silicon substrate

Published online by Cambridge University Press:  26 November 2012

Z. Q. Liu
Affiliation:
Institute of Physics, Center for Condensed Matter Physics, Chinese Academy of Scienes, Beijing 100080, China
S. S. Xie*
Affiliation:
Institute of Physics, Center for Condensed Matter Physics, Chinese Academy of Scienes, Beijing 100080, China
L. F. Sun
Affiliation:
Institute of Physics, Center for Condensed Matter Physics, Chinese Academy of Scienes, Beijing 100080, China
D. S. Tang
Affiliation:
Institute of Physics, Center for Condensed Matter Physics, Chinese Academy of Scienes, Beijing 100080, China
W. Y. Zhou
Affiliation:
Institute of Physics, Center for Condensed Matter Physics, Chinese Academy of Scienes, Beijing 100080, China
C. Y. Wang
Affiliation:
Institute of Physics, Center for Condensed Matter Physics, Chinese Academy of Scienes, Beijing 100080, China
W. Liu
Affiliation:
Institute of Physics, Center for Condensed Matter Physics, Chinese Academy of Scienes, Beijing 100080, China
Y. B. Li
Affiliation:
Institute of Physics, Center for Condensed Matter Physics, Chinese Academy of Scienes, Beijing 100080, China
X. P. Zou
Affiliation:
Institute of Physics, Center for Condensed Matter Physics, Chinese Academy of Scienes, Beijing 100080, China
G. Wang
Affiliation:
Institute of Physics, Center for Condensed Matter Physics, Chinese Academy of Scienes, Beijing 100080, China
*
a)Address all correspondence to this author. E-mail: [email protected]
Get access

Abstract

Large-scale SiO2 nanowires were synthesized by using a simple but an effective approach at low temperature. Scanning electron microscopy, transmission electron microscopy, and x-ray photoelectron spectroscopy were employed to characterize the samples. The results indicated that SiO2 nanowires with a uniform diameter of about 20 nm and a length up to 10 μm have been synthesized. Photoluminescence measurement showed that the SiO2 nanowires emitted blue light at 2.8 and 3.0 eV. The possible growth process of the SiO2 nanowires is discussed. Using this method, large panels of SiO2 nanowires can be made under conditions that are suitable for device fabrication.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Iijima, S., Nature (London) 354, 56 (1991).CrossRefGoogle Scholar
2.Wagner, R.S. and Ellis, W.C., Appl. Phys. Lett. 4, 89 (1964).CrossRefGoogle Scholar
3.Givargizov, E.I., J. Cryst. Growth 20, 217 (1973).CrossRefGoogle Scholar
4.Holonyak, N. Jr., Wolfe, C.M., and Moore, J.S., Appl. Phys. Lett. 6, 64 (1965).CrossRefGoogle Scholar
5.Hiruma, K., Katsuyama, T., Ogawa, K., Morgan, G.P., Koguchi, M., and Kakibayashi, H., Appl. Phys. Lett. 59, 431 (1991).CrossRefGoogle Scholar
6.Koguchi, M., Kakibayama, H., Yazawa, M., Hiruma, K., and Katsuyama, T., Jpn. J. Appl. Phys. 31, 2061 (1992).CrossRefGoogle Scholar
7.Ozaki, N., Ohno, Y., and Takeda, S., Appl. Phys. Lett. 73, 3700 (1998).CrossRefGoogle Scholar
8.Liu, H., Biegelsen, D.K., Johnson, N.M., Ponce, F.A., and Pease, R.F.W., J. Vac. Sci. Technol. B 13, 2166 (1995).Google Scholar
9.Liu, H., Biegelsen, D.K., Johnson, N.M., Ponce, F.A., and Pease, R.F.W., Appl. Phys. Lett. 64, 1385 (1994).Google Scholar
10.Keddzierski, J., Bokor, J., and Kisielowski, C., J. Vac. Sci. Technol. B 15, 2825 (1997).CrossRefGoogle Scholar
11.Hiruma, K., Yazawa, M., Katsuyama, T., Ogawa, K., Haraguchi, K., and Kakibayashi, H., J. Appl. Phys. 77 (2), 447 (1995).CrossRefGoogle Scholar
12.Yu, D.P., Hang, Q.L., Ding, Y., Zhang, H.Z., Bai, Z.G., Wang, J.J., Zou, Y.H., Qian, W., Xiong, G.C., and Feng, S.Q., Appl. Phy. Lett. 73, 3076 (1998).CrossRefGoogle Scholar
13.Takikawa, H., Yatsuki, M., and Sakakibara, T., Jpn. J. Appl. Phys. 38, L401 (1999).CrossRefGoogle Scholar
14.Li, W.Z., Xie, S.S., Qian, L.X., Chang, B.H., Zou, B.S., Zhou, W.Y., Zhao, R.A., and Wang, G., Science 274, 1701 (1996).CrossRefGoogle Scholar
15.Nishikawa, H., Shiroyama, T., Nakamura, R., Ohki, Y., Nagasawa, K., and Hama, Y., Phys. Rev. B 45, 586 (1992).CrossRefGoogle Scholar
16.Liu, Z.Q., Pan, Z.W., Sun, L.F., Tang, D.S., Zhou, W.Y., Wang, G., Qian, L.X., and Xie, S.S., J. Phys. Chem. Solids 61, 1171 (2000).CrossRefGoogle Scholar
17.Binary alloy phase diagrams, 2nd ed., edited by Massalski, T.B. (Editor-in-Chief), Okamoto, H., Subramanian, P.R., and Kacprzak, L., (Scott, William W. Jr, ASM International, Materials Park, OH, 1992).Google Scholar