Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-23T11:45:19.949Z Has data issue: false hasContentIssue false

Surface studies of phase formation in Co–Ge system: Reactive deposition epitaxy versus solid-phase epitaxy

Published online by Cambridge University Press:  26 November 2012

I. Goldfarb*
Affiliation:
Department of Solid Mechanics, Materials and Systems, The Fleischman Faculty of Engineering, Tel Aviv University, Ramat Aviv 69978, Israel
G. A. D. Briggs
Affiliation:
Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, United Kingdom
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Morphological evolution of cobalt germanide epilayers, CoxGey, was investigated in situ by scanning tunneling microscopy and spectroscopy and reflection high-energy electron diffraction, as a function of deposition method and, hence, the phase content of the epilayer. During reactive deposition epitaxy, in which Co atoms were evaporated onto a flat pseudomorphic Ge/Si(001) wetting layer at 773 K, the first phase formed was cobalt digermanide, CoGe2, in the form of elongated pyramidal islands. Each of these three-dimensional islands has locally exerted an additional strain on the Ge wetting layer already strained at the Ge/Si(001) interface, lifting the layer metastability and causing, in turn, the formation of three-dimensional Ge pyramids underneath every CoGe2 island. Solid-phase epitaxy of Co onto the same Ge/Si(001) epilayer resulted in the formation of more Co-rich germanide islands. Coupling of strain from these germanides to the epitaxial Ge/Si(001) strain has also facilitated a two-dimensional-to-three-dimensional transition of the Ge layer, however, with the germanide islands located at the Ge pyramid troughs, rather than crests. The difference in the relative location of germanide and germanium islands in these two cases is explained by accommodation of the large lattice-constant germanides at the more relaxed regions of the Ge pyramid crests and the smaller lattice-constant at the compressed Ge pyramid troughs.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Ashburn, S.P., Öztürk, M.C., Harris, G., and Maher, D.M., J. Appl. Phys. 74, 4455 (1993).CrossRefGoogle Scholar
2.Mello, K.E., Soss, S.R., Murarka, S.P., Lu, T-M., and Lee, S.L., J. Appl. Phys. 68, 1817 (1996).Google Scholar
3.Mello, K.E., Murarka, S.P., Lu, T-M., and Lee, S.L., J. Appl. Phys. 81, 7261 (1997).CrossRefGoogle Scholar
4.Dhar, S. and Kulkarni, V.N., Thin Solid Films 333, 20 (1998).Google Scholar
5.Krontiras, Ch., Georgat, S.N., Sakkopolous, S., Vitoratos, E., and Salmi, J., J. Phys.: Condens. Matter 2, 3323 (1990).Google Scholar
6.Lee, C.S., Wilson, I.H., Cheung, W.Y., Chen, Y.J., Xu, J.B., and Wong, S.P., Nucl. Instrum. Methods Phys. Res. Sect. B 148, 604 (1999).CrossRefGoogle Scholar
7.Prabhakaran, K., Sumimoto, K., and Ogino, T., Appl. Phys. Lett. 68, 1241 (1996).CrossRefGoogle Scholar
8.Lin, F., Sarkona, G., Hatalis, M.K., Cserhati, A.F., Austin, E., and Greve, D.W., Thin Solid Films 250, 20 (1994).CrossRefGoogle Scholar
9.Glück, M., Schüppen, A., Rösler, M., Heinrich, W., Hersener, J., König, U., Yam, O., Cytermann, C., and Eizenberg, M., Thin Solid Films 290, 549 (1995).CrossRefGoogle Scholar
10.Wang, Z., Aldrich, D.B., Chen, Y.L., Sayers, D.E., and Nemanich, R.J., Thin Solid Films 290, 555 (1995).Google Scholar
11.Goeller, P.T., Boyanov, B.I., Sayers, D.E., and Nemanich, R.J., Thin Solid Films 320, 206 (1998).CrossRefGoogle Scholar
12.Boyanov, B.I., Goeller, P.T., Sayers, D.E., and Nemanich, R.J., J. Appl. Phys. 86, 1355 (1999).Google Scholar
13.Prabhakaran, K. and Ogino, T., Appl. Surf. Sci. 121/122, 213 (1997).CrossRefGoogle Scholar
14.Prabhakaran, K., Sumitomo, K., and Ogino, T., Surf. Sci. 421, 100 (1999).Google Scholar
15.ASM Handbook, Alloy Phase Diagrams (ASM International, The Materials Information Society, 1992), Vol. 3, pp. 2142;Google Scholar
Hansen, M. and Anderko, K., Constitution of Binary Alloys (McGraw-Hill, New York, 1958), pp. 475476.Google Scholar
16.Pearson, W.B., Pearson’s Handbook of Crystallographic Data for Intermetallic Phases (ASM, Metals Park, Ohio, 1985), pp. 17701771.Google Scholar
17.Scheuch, V., Voigtländer, B., and Bonzel, H.P., Surf. Sci. 372, 71 (1997).CrossRefGoogle Scholar
18.Goldfarb, I. and Briggs, G.A.D., Phys. Rev. B 60, 4800 (1999).Google Scholar
19.Tung, R.T., Gibson, J.M., and Poate, J.M., Appl. Phys. Lett. 42, 888 (1983).Google Scholar
20.Tung, R.T. and Schrey, F., Appl. Phys. Lett. 54, 852 (1989).CrossRefGoogle Scholar
21.Adams, D.P., Yalisove, S.M., and Eaglesham, D.J., J. Appl. Phys. 76, 5190 (1994).Google Scholar
22.Buschmann, V., Rodewald, M., Fuess, H., Van Tendeloo, G., and Schäffer, C., J. Cryst. Growth 191, 430 (1998).CrossRefGoogle Scholar
23.Stalder, R., Schwarz, C., Sirringhaus, H., and von Känel, H., Surf. Sci. 291, 355 (1992).CrossRefGoogle Scholar
24.Entire issue no. 4 of the MRS Bull. 21, 31 (1996) and references therein.Google Scholar
25.Goldfarb, I., Hayden, P.T., Owen, J.H.G., and Briggs, G.A.D., Phys. Rev. Lett. 78, 3959 (1997).CrossRefGoogle Scholar
26.Goldfarb, I., Hayden, P.T., Owen, J.H.G., and Briggs, G.A.D., Surf. Sci. 394, 105 (1997).Google Scholar
27.Goldfarb, I., Owen, J.H.G., Bowler, D.R., Goringe, C.M., Hayden, P.T., Miki, K., Pettifor, D.G., and Briggs, G.A.D., J. Vac. Sci. Technol., A 16, 1938 (1998).CrossRefGoogle Scholar
28.Goldfarb, I. and Briggs, G.A.D., Recent Res. Dev. Mater. Sci. 1, 189 (1998).Google Scholar
29.Goldfarb, I. and Briggs, G.A.D., Surf. Sci. 433–435, 449 (1999).CrossRefGoogle Scholar
30.Pretorius, R., Mater. Res. Soc. Symp. Proc. 25, 15 (1984).CrossRefGoogle Scholar
31.Pretorius, R., Vredenberg, A.M., Saris, F.W., and De Reus, R., J. Appl. Phys. 70, 3636 (1991).CrossRefGoogle Scholar
32.Pretorius, R., Marais, T.K., and Theron, C.C., Mater. Sci. Eng., R 10, 1 (1993).Google Scholar
33.Vantomme, A., Degroote, D., Decoster, J., Langouche, C., and Pretorius, R., Appl. Phys. Lett. 74, 3137 (1999).Google Scholar