Hostname: page-component-68945f75b7-jtc8j Total loading time: 0 Render date: 2024-09-02T15:15:16.914Z Has data issue: false hasContentIssue false

Submicron-grained multiphase TiAlSi alloys: Processing, characterization, and microstructural design

Published online by Cambridge University Press:  31 January 2011

R. Bohn
Affiliation:
AB Material Science, Technical University Hamburg–Harburg, D-21073 Hamburg, Germany, and Institute for Materials Research, GKSS Research Center Geesthacht, D-21502 Geesthacht, Germany
G. Fanta
Affiliation:
Institute for Materials Research, GKSS Research Center Geesthacht, D-21502 Geesthacht, Germany
T. Klassen
Affiliation:
Institute for Materials Research, GKSS Research Center Geesthacht, D-21502 Geesthacht, Germany
R. Bormann
Affiliation:
AB Material Science, Technical University Hamburg–Harburg, D-21073 Hamburg, Germany, and Institute for Materials Research, GKSS Research Center Geesthacht, D-21502 Geesthacht, Germany
Get access

Abstract

Prealloyed powders of the intermetallic γ–TiAl phase and the ceramic Ξ–Ti5Si3 phase were high-energy milled and hot-isostatically pressed (HIP) to produce silicide dispersed composite materials with grain sizes in the submicron and nanometer range. The amorphous state of the as-milled powders crystallizes via a multistep decomposition reaction during degassing at 440 °C and HIP. At a pressure of 200 Mpa HIP-temperatures as low as 750 °C are sufficient for a complete densification of the milled powder. The microstructure of the compacts is very homogeneous and consists of equiaxed γ–TiAl crystals and Ξ–Ti5(Si,Al)3 particles. Depending on the silicon content, these particles are interspersed within the grain boundary network of the γ–TiAl phase or dispersed inside the γ grains. With respect to technical applications, submicron-grained composites are regarded as promising precursor materials that should allow for easy hot working in the as-prepared state as well as for high-temperature structural applications after a suitable transformation of the microstructure.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Gleiter, H., in Deformation of Polycrystals: Mechanisms and Microstructures, edited by Hansen, N., Horsewell, A., Leffers, T., and Lilholt, A., (Proc. 2nd Risø Int. Symp. on Metallurgy and Microstructures, Roskilde, Denmark, 1981), p. 15.Google Scholar
2.Haubold, T., Birringer, R., Lengeler, B., and Gleiter, H., Phys. Lett. A 135, 461 (1989).CrossRefGoogle Scholar
3.Gleiter, H., Progr. Mater. Sci. 33, 223 (1989).CrossRefGoogle Scholar
4.Birringer, R., in Nanophase Materials: Synthesis–Properties– Applications, edited by Hadjipanayis, G.C. and Siegel, R.W. (NATO ASI E. 260, Kluwer, Dordrecht, The Netherlands, 1994),p. 157.Google Scholar
5.Averback, R.S., Hahn, H., Höfler, H.J., Logas, J.L., and Shen, T.C., in Interfaces Between Polymers, Metals, and Ceramics, edited by Dekoven, B.M., Gellman, A.J., and Rosenberg, R. (Mater. Res. Soc. Symp. Proc. 153, Pittsburgh, PA, 1989), pp. 312.Google Scholar
6.Tschöpe, A. and Birringer, R., Acta Metall. Mater. 41, 2791 (1993).Google Scholar
7.Günther, B., Kumpmann, A., and Kunze, H-D., Scripta Metall. Mater. 27, 833 (1992).Google Scholar
8.Weissmüller, J., Löffler, J., and Kleber, M., Nanostr. Mater. 6, 105 (1995).CrossRefGoogle Scholar
9.Fougere, G.E., Weertman, J.R., and Siegel, R.W., Nanostr. Mater. 3, 379 (1993).Google Scholar
10.Sanders, P.G., Youngdahl, C.J., and Weertman, J.R., Mater. Sci. Eng. A234–236, 77 (1997).Google Scholar
11.Kim, Y-W. and Dimiduk, D.M., in Structural Intermetallics, edited by Nathal, M.V., Darolia, R., Liu, C.T., Martin, P.L., Miracle, D.B., Wagner, R., and Yamaguchi, M. (TMS, Warrendale, PA, 1997),p. 531.Google Scholar
12.Clemens, H., Lorich, A., Eberhardt, N., Glatz, W., Knabl, W., and Kestler, H., Z. Metallkd. 90, 569 (1999).Google Scholar
13.Noda, T., Okabe, M., Isobe, S., and Sayashi, M., Mater. Sci. Eng. A192/193, 774 (1995).Google Scholar
14.Sagar, P.K., Nandy, T.K., Gogia, A.K., Muraleedharan, K., and Banerjee, D., Mater. Sci. Eng. A192/193, 799 (1995).CrossRefGoogle Scholar
15.Es-Souni, M., Chen, D., Dogan, B., Wagner, R., Beaven, P.A., Bartels, A., in Proceedings of the International Symposium on Intermetallic Compounds, JIMIS-6, edited by Izumi, O. (Japan Inst. of Metals, Sendai, Japan, 1991), p. 525.Google Scholar
16.Es-Souni, M., Wagner, R., and Beaven, P.A., Mater. Sci. Eng. A153,444 (1992).Google Scholar
17.Koch, C.C., in Materials Science and Technology, edited by Cahn, R.W., Haasen, P., and Kramer, E.J. (VCH, Weinheim, Germany, 1991), Vol 15, p. 193.Google Scholar
18.Bohn, R., Klassen, T., and Bormann, R., Acta Mater. 49, 299 (2001).Google Scholar
19.Bohn, R., Klassen, T., and Bormann, R. (unpublished).Google Scholar
20.Oehring, M., Yan, Z.H., Klassen, T., and Bormann, R., Phys. Status Solidi 131, 671 (1992).Google Scholar
21.Oehring, M., Klassen, T., and Bormann, R., J. Mater. Res. 8, 2819 (1993).CrossRefGoogle Scholar
22.Yan, Z.H., Oehring, M., and Bormann, R., J. Appl. Phys. 72, 2478 (1992).Google Scholar
23.Klassen, T., Oehring, M., and Bormann, R., Acta Mater. 45, 3935 (1997).CrossRefGoogle Scholar
24.Guan, Z.Q., Pfullmann, Th., Oehring, M., and Bormann, R., J. Alloys Compnd. 252, 245 (1997).CrossRefGoogle Scholar
25.Perrot, P., in Ternary Alloys: A Comprehensive Compendium of Evaluated Constitutional Data and Phase Diagrams, edited by Petzow, G. and Effenberg, G. (MSI, VCH, Weinheim, Germany, 1993), Vol. 8, p. 283.Google Scholar
26.Oehring, M., Appel, F., Pfullmann, Th., and Bormann, R., Mater. Sci. Forum 179–181, 435 (1995).Google Scholar
27.Imayev, R., Imayev, V., and Salishchev, G.A., J. Mater. Sci. 27, 4465 (1992).CrossRefGoogle Scholar
28.Imayev, R., Shagiev, M., Salishchev, G., Imayev, V., and Valitov, V., Scripta Mater. 34, 985 (1996).CrossRefGoogle Scholar
29.Rommerskirchen, M., Ph.D. Dissertation, RWTH Aachen, Germany (1997).Google Scholar
30.Froes, F.H., Suryanarayana, C., Mukhopadhyay, D.K., Brand, K., Korth, G., Zick, D., Tylus, P., and Hebeisen, J., in Advances in Powder Metallurgy and Particulate Materials—1995, edited by Phillips, M. and Porter, J. (MPIF, Princeton, NJ, 1995), Vol. 3,p. 12/63.Google Scholar
31.Ameyama, K., Uno, H., and Tokizane, M., Intermetallics 2, 315 (1994).Google Scholar
32.Kim, L.S., Klassen, T., Altstetter, C.J., and Averback, R.S.,in Metastable Phases and Microstructures, edited by Bormann, R., Mazzone, G., Shull, R.D., Averback, R.S., and Ziolo, R.F. (Mater. Res. Soc. Symp. Proc. 400, Pittsburgh, PA, 1996), p. 275.Google Scholar
33.Morris, M.A. and Lebœuf, M., Mater. Sci. Eng. A224,1 (1997).CrossRefGoogle Scholar
34.Chang, H., Altstetter, C.J., and Averback, R.S., J. Mater. Res. 7, 2962 (1992).Google Scholar
35.Uemori, R., Hanamura, T., and Morikawa, H., Scripta Metall. Mater. 26, 969 (1992).Google Scholar
36.Menand, A., Huguet, A., and Nérac-Partaix, A., Acta Mater. 44, 4729 (1996).Google Scholar
37.Wurzwallner, K., Clemens, H., Schretter, P., Bartels, A., and Koeppe, C., in High Temperature Ordered Intermetallic Alloys V, edited by Baker, I., Darolia, R., Whittenberger, J.D., and Yoo, M.H. (Mater. Res. Soc. Symp. Proc. 288, Pittsburgh, PA, 1993), p. 867.Google Scholar
38.Gerling, R., Leitgeb, R., and Schimansky, F-P., Mater. Sci. Eng. A252,239 (1998).CrossRefGoogle Scholar
39.Clemens, H., Z. Metallkd. 86, 814 (1995).Google Scholar
40.Appel, F., Clemens, H., Glatz, W., and Wagner, R.,in High-Temperature Ordered Intermetallic Alloys VII, edited by Koch, C.C., Liu, C.T., Stoloff, N.S., and Wanner, A. (Mater. Res. Soc. Symp. Proc. 460, Pittsburgh, PA, 1997), p. 195.Google Scholar
41.Bohn, R., Klassen, T., and Bohn, R.Adv. Eng. Mater. 3, 238 (2001).Google Scholar
42.Klassen, T., Günther, R., Dickau, B., Gärtner, F., Bartels, A., Bormann, R., and Mecking, H., J. Am. Ceram. Soc. 81, 2504 (1998).Google Scholar
43.Klassen, T., Günther, R., Dickau, B., Bartels, A., Bormann, R., and Mecking, H., Mater. Sci. Forum 269–272, 37 (1998).Google Scholar
44.Fanta, G., Ph.D.Dissertation, Technical University Hamburg-Harburg, Hamburg, Germany, (2001).Google Scholar
45.Benn, R.C. and Mirchandani, P.K., in New Materials by Mechanical Alloying Techniques, edited by Arzt, E. and Schultz, L. (DGM Informationsgesellschaft Verlag, Oberwesel, Germany, 1989),p. 19.Google Scholar
46.Phase Diagrams of Binary Titanium Alloys, edited by Murray, J.L. (ASM International, Metals Park, OH, 1987), p. 289.Google Scholar
47.Schob, O., Nowotny, H., and Benesovsky, F., Planseebericht f. Pulvermetall. 10, 65 (1962).Google Scholar
48.Pfullmann, Th. and Beaven, P.A., Scripta Metall. Mater. 28, 275 (1993).Google Scholar
49.Quakernaat, J. and Visser, J.W., High Temp. High Press. 6, 515 (1974).Google Scholar
50.Bohn, R., Ph.D. Dissertation, Technical University Hamburg-Harburg, Hamburg, Germany, (1999).Google Scholar
51.Bohn, R., Fanta, G., and Bormann, R., in Intermetallics and Superalloys, EUROMAT’99 Vol. 10, edited by Morris, D.G., Naka, S., and Caron, P. (Wiley-VCH, Weinhein, Germany, 2000),p. 271.Google Scholar
52.Fanta, G., Bohn, R., Dahms, M., Klassen, T., and Bormann, R., Intermetallics 9, 45 (2001).CrossRefGoogle Scholar
53.Zener, C., cited by Smith, C.S., Trans. AIME 175, 15 (1948).Google Scholar