Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-04T17:47:09.845Z Has data issue: false hasContentIssue false

Structural Characterization of Fe3O4–NiO Superlattices Using High-reSolution Transmission Electron Microscopy

Published online by Cambridge University Press:  31 January 2011

A. Rečnik
Affiliation:
Max-Planck-Institut für Metallforschung, Seestrasse 92, 70174 Stuttgart, Germany and Ceramics Department, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
D. L. Carroll
Affiliation:
Max-Planck-Institut für Metallforschung, Seestrasse 92, 70174 Stuttgart, Germany
K. A. Shaw
Affiliation:
Department of Physics and MARTECH, Florida State University, Tallahassee, Florida 32306
D. M. Lind
Affiliation:
Department of Physics and MARTECH, Florida State University, Tallahassee, Florida 32306
M. Rühle
Affiliation:
Max-Planck-Institut für Metallforschung, Seestrasse 92, 70174 Stuttgart, Germany
Get access

Abstract

Superlattices of Fe3O4–NiO layers have been studied by high-resolution transmission electron microscopy (HRTEM). These superlattices are grown by oxygen-plasma-assisted molecular-beam epitaxy (MBE) on (001) oriented MgO substrates, and exhibit a high degree of ordering at the interfaces between the interlayers. The lack of misfit dislocations at the Fe3O4–NiO interfaces suggeststhat lattice strain is largely accommodated by changes in the lattice spacing. By quantitative HRTEM analysis of Fe3O4–NiO interfaces, possible atomic models are discussed, having implications in magnetic ordering and spin exchange mechanisms for such interlayer systems.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Battle, P. D., Gibb, T. C., and Nixon, S., J. Solid State Chem. 77, 124 (1988).CrossRefGoogle Scholar
2.Mott, F. N., Adv. Phys. 39, 55 (1990).CrossRefGoogle Scholar
3.Zener, C., Phys. Rev. 81, 440 (1951).Google Scholar
4.Cox, P. A., in Transition Metal Oxides: An Introduction to Their Electronic Structure and Properties (Oxford University Press, Oxford, England, 1995), pp. 148, 149.Google Scholar
5.Kondo, J., Solid State Phys. 23, 184 (1969).Google Scholar
6.Berry, S. D., Lind, D. M., Chern, G., and Mathias, H., J. Magn. & Magn. Mater. 123, 126 (1993).Google Scholar
7.Kakol, Z., Pribble, R. N., and Honig, J. M., Solid State Commun. 69, 793 (1989).Google Scholar
8.Tebble, R. S. and Craik, D. J., in Magnetic Materials (John Wiley, London, England, 1969).Google Scholar
9.Lind, D. M., Berry, S. D., Chern, G., , Mathias, and Testardi, L. R., Phys. Rev. B 45, 1838 (1992).CrossRefGoogle Scholar
10.Galasso, F. S., Structure and Properties of Inorganic Solids (Pergamon Press, Oxford, England, 1970), pp. 59, 217.CrossRefGoogle Scholar
11.Powder Diffraction File: Inorganic Phases, edited by McClung, W. F. (International Center for Diffraction Data, Swarthmore, PA, 1990).Google Scholar
12.Fujii, T., Takano, M., Katano, R., Bando, Y., and Isozumi, Y., J. Cryst. Growth 99, 606 (1990).CrossRefGoogle Scholar
13.Ortiz, C., Lim, G., Chen, M. M., and Castillo, G., J. Mater. Res. 3, 344 (1988).CrossRefGoogle Scholar
14.Yoshii, S., Ishii, O., Hattori, S., Nakagawa, T., and Ishida, J., J. Appl. Phys. 53, 2556 (1982).Google Scholar
15.Lind, D. M., Tay, S-P., Berry, S. D., Borchers, J. A., and Erwin, R. W., J. Appl. Phys. 73, 6886 (1993).Google Scholar
16.Wolf, R. M., De Veirman, A. E. M., van der Sluis, P., van der Zaag, P. J. and van der Stegge, J. B. F., in Epitaxial Oxide Thin Films and Heterostructures, edited by Fork, D. K., Phillips, J. M., Ramesh, R., and Wolf, R. M. (Mater. Res. Soc. Symp. Proc. 341, Pittsburgh, PA, 1994), p. 23.Google Scholar
17.Strecker, A., Salzberger, U., and Mayer, J., Praktische Metallographie 30, 481 (1993).Google Scholar
18.Stadelmann, P. A., Ultramicroscopy 21, 131 (1987).Google Scholar
19.Möbus, G., Necker, G., and Rühle, M., Ultramicroscopy 46, 46 (1993).Google Scholar
20.Borchers, J. A., Erwin, R. W., Berry, S. D., Lind, D. M., Lochner, E., and Shaw, K. A., Appl. Phys. Lett. 64, 381 (1994).Google Scholar
21.Borchers, J. A., Erwin, R. W., Berry, S. D., Lind, D. M., Anker, J., Lochner, E., Shaw, K. A., and Hilton, D., J. Appl. Phys. 51, 8276 (1995).Google Scholar
22.Rečnik, A. and Kolar, D., Acta Chim. Slov. 42, 219 (1995).Google Scholar