Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-23T12:46:48.769Z Has data issue: false hasContentIssue false

Structural and dielectric characterization of Ba4Nd2Ti4+xTa6−xO30−x/2 nonstoichiometric ceramics

Published online by Cambridge University Press:  31 January 2011

X. M. Chen
Affiliation:
Institute of Materials Physics & Engineering, Zhejiang University, Hangzhou 310027, China
X. H. Zheng
Affiliation:
Institute of Materials Physics & Engineering, Zhejiang University, Hangzhou 310027, China
J. Wang
Affiliation:
Institute of Materials Physics & Engineering, Zhejiang University, Hangzhou 310027, China
Get access

Abstract

Ba4Nd2Ti4Ta6O30 dielectric ceramics with high-Ε and low dielectric loss were modified to improve the temperature coefficient of dielectric constant. Through partial substitution of Ti4+ for Ta5+, a significantly reduced temperature coefficient of dielectric constant (tΕ = –664p pm/°C) combined with a dielectric constant above 110 and a low dielectric loss (tanδ–0.0005 to 0.0006 at 1 MHz) resulted in the nonstoichiometric dielectric ceramics with nominal compositions Ba4Nd2Ti4+xTa6-xO30?x/2 (x = 0.8–1.2).

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Roberts, G.L., Cava, R.J., Peck, W.F., and Krajewski, J.J., J. Mater. Res. 12, 526 (1997).CrossRefGoogle Scholar
2Ling, H.C., Yan, M.F., and Rhodes, W.W., J. Mater. Res. 5, 1752 (1990).CrossRefGoogle Scholar
3Kolar, D., Gaberscek, S., Stadler, Z., and Suvorov, D., Ferroelectrics 27, 269 (1980).CrossRefGoogle Scholar
4Laffez, P., Desgardin, G., and Raveau, B., J. Mater. Sci., 27, 5229 (1992).Google Scholar
5Negas, T. and Davies, P.K., Materials and Processes for Wireless Communications, Ceramic Transactions, edited by Negas, T. and Ling, H. (The American Ceramic Society, Westerville, OH, 1995), Vol. 53, p.179.Google Scholar
6Ohsato, H., Kato, H., Mizuta, M., Nishigaki, S., and Okuda, T., Jpn. J. Appl. Phys.,34, 5413 (1995).CrossRefGoogle Scholar
7Wu, Y.J. and Chen, X.M., J. Europ. Ceram. Soc., 19, 1123 (1999).CrossRefGoogle Scholar
8Kato, J., Kagata, H., and Nishimoto, K., Jpn. J. Appl. Phys., 30, 2343 (1991).CrossRefGoogle Scholar
9Nakano, M., Suzuki, K., Miura, T., and Kobayashi, M., Jpn. J. Appl. Phys., 32, 4314 (1993).CrossRefGoogle Scholar
10Chen, X.M. and Yang, J.S., J. Europ. Ceram. Soc., 19, 139 (1999).CrossRefGoogle Scholar
11Chen, X.M., Yang, J.S., and Wang, J., Dielectric Ceramic Materials, Ceramic Transactions, edited by Nair, K.M. and Bhalla, A.S. (The American Ceramic Society, Westerville, OH, 1999), Vol. 100, pp. 7176.Google Scholar
12Wang, J., Chen, X.M., and Yang, J.S., J. Mater. Res.,14, 3375 (1999).CrossRefGoogle Scholar
13Hakki, B.W. and Coleman, P.D., IRE Trans. Microwave Theory Tech. 8, 402 (1960).CrossRefGoogle Scholar
14Colla, E.L., Reaney, I.M., and Setter, N., J. Appl. Phys. 74, 3414 (1993).CrossRefGoogle Scholar
15Giess, E.A., Scott, B.A., Burns, G., O'Kane, D.F., and Segmuller, A., J. Am. Ceram. Soc., 52, 276 (1969).CrossRefGoogle Scholar
16Ikeda, T., Haraguchi, T., Onodera, Y., and Saito, T., Jpn. J. Appl. Phys., 10, 987 (1971).CrossRefGoogle Scholar